
Lecture 2

In the previous lecture we motivated the the T T̄ deformation from both quantum field theory

and quantum gravity points of view. In particular, we showed that the T T̄ deformation is an

irrelevant deformation driven by a specific combination of the (product of) components of the

stress tensor. In this lecture we will show that this combination guarantees that the expectation

value of the T T̄ operator is finite and that it has a fixed scaling dimension. We will then show

that these properties, which underlie the solvability of the T T̄ deformation, can be generalized

to an infinite class of irrelevant deformations.

2 The T T̄ operator

We will now establish two crucial properties of the T T̄ operator, namely

(a) the fact that this operator is well defined, i.e. that the coincident-point limit below is finite

(at least within expectation values)

T T̄ = lim
y±!x±

⇥
T++(x±)T��(y±) � T+�(x±)T+�(y±)

⇤
; (2.1)

(b) the expectation value of the T T̄ operator is constant and factorizes, meaning that

hT T̄ i = hT++(x±)ihT��(x±)i � hT+�(x±)i2 = constant. (2.2)

This implies, in particular, that the scaling dimension of the T T̄ operator is always 4.

In order to prove these statements, we need to make several assumptions on the local and

global properties of the QFTs we’re interested in. For convenience we work in Euclidean signa-

ture obtained by letting t ! it such that

x+ = x + t ! x + it =: z, x� = x � t ! x � it =: z̄. (2.3)

Likewise, we introduce the following notation for the components of the stress tensor

T := �2⇡Tzz, T̄ := �2⇡Tz̄z̄, ✓ := 2⇡Tzz̄. (2.4)

The assumptions we will make are

(i) Local translational and rotational symmetry: as described before, we assume the QFTs

we’re interested in are invariant under Poincaré transformations, consequence of which

@µTµ
⌫ = 0, Tµ⌫ = T⌫µ. (2.5)
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We can write the conservation law explicitly as follows

@µTµ
⌫ = 0 =)

@zTz̄z + @z̄Tzz = 0,

@z̄Tzz̄ + @zTz̄z̄ = 0,
(2.6)

where we used the fact that in the (z, z̄) coordinates the line element is ds2 = dzdz̄ such

that the components of the metric are gzz = gz̄z̄ = gzz = gz̄z̄ = 0, gzz̄ = 1/2, and gzz̄ = 2.

(ii) Local interactions: we assume that all interactions are local in the sense that, at long

enough distances, the connected part of any two-point function vanishes and we’re left

only with the disconnected part

lim
z0!1

hO(z)O0(z0)i = hO(z)ihO0(z0)i, 8 O, O0. (2.7)

(iii) Global translational symmetry: we assume that the translational symmetry is not spon-

taneously broken in the sense that, up to a phase factor,

U(z0)|0i = eiT z0eiT̄ z̄0 |0i ⇡ |0i, (2.8)

where U(z0) generates the translation (z, z̄) ! (z + z0, z̄ + z̄0) and ⇡ denotes equality up

to a phase factor. This assumption implies that the one and two-point functions of any

field O(z) satisfy

hO(z)i = hU †(z � z0)O(z0)U(z � z0)i = hO(z0)i,

hO(z)O(z0)i = hU †(z � z0)O(z0)O(z0 � z + z0)U(z � z0)i = hO(z0)O(z0 � z + z0)i,

which in turn imply that

hO(z)i = constant, hO(z)O(z0)i = f(z � z0). (2.9)

The assumptions (i) – (iii) imply that the underlying geometry is either the plane or the cylinder.

We don’t have a general definition of the T T̄ operator in other spacetimes.

Exercise 2.1: consider the case when the QFT is conformally invariant, i.e. a CFT.

Show that properties (ii) and (iii) hold for O = T both on the plane and the cylinder.

Hint: exploit the fact that theory is conformal to map the plane to the cylinder.

2.1 Finiteness and factorizability of T T̄

Let us now show that the T T̄ operator, formally defined by2

T T̄ (z0) := lim
z!z0

⇥
T (z)T̄ (z0) � ✓(z)✓(z0)

⇤
, (2.10)

2For simplicity, we henceforth drop the dependence of T (z, z̄), T̄ (z, z̄), and ✓(z, z̄) on the z̄ coordinate.
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is well defined (free of divergences) in any QFT satisfying assumptions (i) – (iii), up to total

derivative terms that don’t a↵ect its expectation value. In order to see this let’s consider the

operator product expansion (OPE) for the di↵erent components of the stress tensor. Recall

that the OPE tells us about the short distance behavior between two operators,

O(z)O(z0) ⇡

X

i

ci(z � z0)Oi(z
0), (2.11)

where the sum runs over all of the local operators Oi(z) of the theory, including operators

obtained from derivatives, e.g. @zOi(z). In the OPE (2.11), ⇡ indicates that the RHS is given

up to analytic terms of the form (z�z0)n with n > 1 such that the ci(z�z0) depend on (z�z0)n

with n  0. Furthermore, note that since the theory is invariant under translations, the RHS

can only depend on the di↵erence z � z0.

The components of the stress tensor in any Poincaré-invariant QFT satisfy the following

generic OPEs

0

@ T (z)T̄ (z0) T (z)✓(z0)

✓(z)T̄ (z0) ✓(z)✓(z0)

1

A ⇡

X

i

0

@ Di(z � z0) Ai(z � z0)

Bi(z � z0) Ci(z � z0)

1

AOi(z
0). (2.12)

As a result, the OPE between the terms featured in the definition of the T T̄ operator reads

I(z, z0) := T (z)T̄ (z0) � ✓(z)✓(z0) ⇡

X

i

⇥
Di(z � z0) � Ci(z � z0)

⇤
Oi(z

0). (2.13)

Since we are summing over all local operators on the RHS, we can split the sum as follows

I(z, z0) ⇡ O
T T̄

(z0) +
X

i

Gi(z � z0)Oi(z
0) +

X

i

Fµ

i
(z � z0)@µOi(z

0), (2.14)

where the first term is the only operator for which Di(z �z0)�Ci(z �z0) is constant, a constant

that has been absorbed into the definition of O
T T̄

(z). The second sum in (2.14) runs over

operators without derivatives while the third sum includes terms with at least one derivative.

Both the Gi(z � z0) and Fµ

i
(z � z0) terms are potentially divergent in the limit z ! z0. Our

goal will be to show that Gi(z � z0) = 0 as a consequence of assumptions (i) – (iii). On the

other hand, while we cannot show that Fµ

i
(z � z0) vanishes, these terms do not contribute to

the expectation value of the T T̄ operator since, by assumption (iii), we have

h@µOi(z)i = @µhOi(z)i = 0. (2.15)

We begin by considering derivatives of the operator I(z, z0) defined in (2.13). The conser-

vation of the stress tensor implies that

@z̄I(z, z0) = @z̄T (z)
| {z }
=@z✓(z)

T̄ (z0) � @z̄✓(z)✓(z0) + ✓(z)
⇥
@z0 T̄ (z0) � @z̄0✓(z

0)
| {z }

=0

⇤
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= (@z + @z0)✓(z)T̄ (z0) � (@z̄ + @z̄0)✓(z)✓(z0), (2.16)

where the last term in the first line has been added by hand since it vanishes exactly. Similarly,

it’s not di�cult to show that

@zI(z, z0) = (@z + @z0)T (z)T̄ (z0) � (@z̄ + @z̄0)T (z)✓(z0). (2.17)

Both (2.16) and (2.17) feature (@z + @z0) and (@z̄ + @z̄0) derivatives which satisfy

(@z + @z0)f(z � z0) = 0, (@z̄ + @z̄0)f̄(z̄ � z̄0) = 0, (2.18)

for any functions f(z � z0) and f̄(z̄ � z̄0). Consequently, the conservation of the stress tensor

implies that

@z
⇥
T (z)T̄ (z0) � ✓(z)✓(z0)

⇤
=

X

i

⇥
Bi(z � z0)@z0Oi(z

0) � Ci(z � z0)@z̄0Oi(z
0)
⇤
, (2.19)

@z̄
⇥
T (z)T̄ (z0) � ✓(z)✓(z0)

⇤
=

X

i

⇥
Di(z � z0)@z0Oi(z

0) � Ai(z � z0)@z̄0Oi(z
0)
⇤
. (2.20)

Integrating these expressions we learn that Gi(z � z0) = 0, so we have

T (z)T̄ (z0) � ✓(z)✓(z0) ⇡ O
T T̄

(z0) +
X

i

Fµ

i
(z � z0)@µOi(z

0). (2.21)

We thus find that the expectation value of the T T̄ operator is finite in any QFT satisfying

assumptions (i) – (iii) such that

hT T̄ (z0)i = lim
z!z0

hT (z)T̄ (z0) � ✓(z)✓(z0)i = hO
T T̄

(z0)i. (2.22)

Factorizability of T T̄

Let us now show that hI(z, z0)i = hT (z)T̄ (z0) � ✓(z)✓(z0)i factorizes in any QFT satisfying

assumptions (i) – (iii). First, we show that hI(z, z0)i is constant,

@z̄hI(z, z0)i = h@z̄T (z)
| {z }
@z✓(z)

T̄ (z0)i � @z̄h✓(z)✓(z0)i

= @zh✓(z)T̄ (z0)i � @z̄h✓(z)✓(z0)i

= �@z0h✓(z)T̄ (z0)i + @z̄0h✓(z)✓(z0)i

= �h✓(z)
⇥
@z0 T̄ (z0) � @z̄0✓(z

0)
| {z }

=0

⇤
i

= 0, (2.23)

where we used the conservation of the stress tensor in the first and fourth lines, and used

assumption (iii) on the third line to exchange (@z, @z̄) with (�@z0 , �@z̄0). Similarly, it’s not
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di�cult to show that @zhI(z, z0)i = 0. Then, using assumption (iii) once again, we find that

hI(z, z0)i is also annihilated by @z0 and @z̄0 such that

hI(z, z0)i = constant. (2.24)

Since hI(z, z0)i is constant, we can put z and z0 at any location. In particular, we can choose z

and z0 to be infinitely separated so that, by assumption (ii), we have

hI(z, z0)i = hT (z)T̄ (z0)i � h✓(z)✓(z0)i
���
|z�z0|!1

(2.25)

= hT (z)ihT̄ (z0)i � h✓(z)ih✓(z0)i. (2.26)

We conclude that the T T̄ operator is a well-defined operator that factorizes in any Poincaré-

invariant QFT in two dimensions. This implies, in particular, that the T T̄ operator has fixed

scaling dimension 4.

T T̄ in CFT

In order to gain some intuition, let us now consider a QFT that, in addition to being Poincaré

invariant, is also invariant under scale transformations. In two dimensions, scale invariance

implies conformal invariance, so we are considering a full-fledged CFT. In this case, it’s pos-

sible to write down an explicit expression for the T T̄ operator and, using the state-operator

correspondence, identify it with a state in the Hilbert space of the theory.

A defining characteristic of a CFT is that the stress tensor is traceless, such that

Tzz̄ = 0 =) @z̄T (z) = 0, @zT̄ (z̄) = 0. (2.27)

The chiral conservation of the stress tensor implies the existence of an infinite number of local

symmetries described by two commuting copies of the Virasoro algebra (see exercise 1.2). On

the plane, the generators of this algebra are related to the stress tensor by

T (z) =
X

n

z�n�2Ln, T̄ (z̄) =
X

n

z̄�n�2L̄n, (2.28)

and can be shown to satisfy

[Ln, Lm] = (n � m)Ln+m +
c

12
n(n2

� 1)�n+m, (2.29)

[L̄n, L̄m] = (n � m)L̄n+m +
c

12
n(n2

� 1)�n+m, (2.30)

[Ln, L̄m] = 0, (2.31)

where c is the central charge of the CFT.

The fact that Ln and L̄m generators commute with each other can be understood as a

consequence of the vanishing of the T (z)T̄ (z̄) OPE. Another consequence of the vanishing of
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the T (z)T̄ (z̄) OPE is that the T T̄ operator is manifestly finite such that

T T̄ (z) = lim
z0!z

T (z0)T̄ (z̄) =
X

n,m

z�n�2z̄�m�2L�nL̄�m. (2.32)

This implies, in particular, that the expectation value of the T T̄ operator automatically factor-

izes in a CFT. We furthermore note that the components of the stress tensor T (z) and T̄ (z̄) are

related via the state-operator correspondence to descendant states of the vacuum, namely

T (z) $ L�2|0i, T̄ (z̄) $ L̄�2|0i. (2.33)

The T T̄ operator is also associated with a descendant of the vacuum. Indeed, using (2.32) and

(2.31) we identify the T T̄ operator with

T T̄ (z) $ L�2L̄�2|0i. (2.34)

Exercise 2.2: a CFT contains an infinite number of descendant states obtained by

acting the L�n and L̄�m operators on the vacuum with n, m � 2. In particular, every

CFT contains the state L�3L̄�3|0i. What’s the interpretation of this state in terms of

the stress tensor? Can this operator be generalized to QFTs without scale invariance?

Hint: use the Virasoro algebra (2.29) and the mode expansion of T (z), T̄ (z) in (2.28).

Generalization to other states

We have shown that the vacuum expectation value of the T T̄ operator is finite and factorizes.

These properties of the T T̄ operator continue to hold for more general states. Indeed, for

non-degenerate eigenstates |ni of the energy and momentum we have

hn|T T̄ |ni = lim
z!z0

⇥
hn|T (z)T̄ (z0)|ni � hn|✓(z)✓(z0)|ni

⇤

= hn|T |nihn|T̄ |ni � hn|✓|ni
2 = constant. (2.35)

In order to show this we need to revisit the assumptions (i) – (iii) described earlier. Assumption

(i) (local translation invariance) still holds by definition of the theories under consideration.

Assumption (iii) (global translation invariance) also holds. This follows from the fact that |ni

is an eigenstate of the energy and momentum such that

U(z0)|ni = eiELz0eiERz̄0 |ni, (2.36)

where the left and right-moving energies EL and ER are defined by

EL := E + P, ER := E � P. (2.37)
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Consequently, we find that the one and two-point functions in the state |ni still satisfy

hn|O(z)|ni = constant, hn|O(z)O(z0)|ni = f(z � z0). (2.38)

Let hIn(z, z0)i := hn|T (z)T̄ (z0)|ni � hn|✓(z)✓(z0)|ni. Then, repeating the same steps used in the

case where |ni = |0i together with assumptions (i) and (iii) we learn that

hIn(z, z0)i = constant. (2.39)

We now note that we cannot use assumption (ii) (local interactions) to argue that hIn(z, z0)i

factorizes. This is because hn|O(z)O(z0)|ni can be understood as a four-point function with two

operators inserted at z = 0 and z = 1. In other words, the states |ni and hn| are not localized,

so there is no sense in which taking |z � z0| ! 1 turns o↵ the interactions between O(z) and

O(z0). Nevertheless, since |ni is an energy and momentum eigenstate, we can use assumption

(iii) to write

hIn(z, z0)i =
X

n0

�
hn|T (z)|n0

ihn0
|T̄ (z0)|ni � hn|✓(z)|n0

ihn0
|✓(z0)|ni

�

=
X

n0

⇣
hn|T (z)|n0

ihn0
|T̄ (z)|niei[EL(n)�EL(n0)](z0�z)ei[ER(n)�ER(n0)](z0�z)

� hn|✓(z)|n0
ihn0

|✓(z)|niei[EL(n)�EL(n0)](z0�z)ei[ER(n)�ER(n0)](z0�z)
⌘
.

(2.40)

The phases in (2.40) are a result of using the translation operator to move the operators O(z) =

{T̄ (z), ✓(z)} from (z0, z̄0) to (z, z̄), that is

hn0
|O(z0)|ni = hn0

|U †(z0 � z)O(z)U(z0 � z)|ni

= hn0
|O(z)|niei[EL(n)�EL(n0)](z0�z)ei[ER(n)�ER(n0)](z0�z).

(2.41)

The sum in (2.40) can be split into the contribution of the state with n0 = n and the remainder,

such that

hIn(z, z0)i = hn|T (z)|nihn|T̄ (z)|ni � hn|✓(z)|nihn|✓(z)|ni

| {z }
constant

+
X

n0 6=n

Fn(z � z0), (2.42)

for some function Fn(z � z0). The first term is a constant as a consequence of (2.38) while

the second term depends on the coordinates. Since hIn(z, z0)i is a constant and |ni is non-

degenerate, all of the terms in
P

n0 6=n
Fn(z � z0) must cancel each other. As a result, we find

that the expectation value of the T T̄ operator in a non-degenerate state |ni also factorizes

hn|T T̄ |ni = hn|T |nihn|T̄ |ni � hn|✓|ni
2 = constant. (2.43)

We conclude that the expectation value of the T T̄ operator is also finite and factorizes when

the vacuum is replaced by an energy and momentum eigenstate.
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2.2 Higher spin generalizations

The feature that makes the expectation value of the T T̄ operator finite and factorizable is that

it’s built from a particular combination of the components of the stress tensor. The properties

that make the T T̄ operator turn out to be more universal and can be generalized to conserved

currents other than the stress tensor as we will now describe.

Let us consider a theory with additional conserved currents. We introduce the following

notation

O
h,h̄

: scaling dimension: h + h̄, spin: h � h̄. (2.44)

We are interested in conserved currents of scaling dimension s+1. Let us single out the following

components of these currents

component spin

Ts+1 := Ts+1,0 s + 1

✓s�1 := ✓s,1 s � 1

T̄s+1 := T̄0,s+1 �(s + 1)

✓̄s�1 := ✓̄1,s �(s � 1)

(2.45)

which are assumed to satisfy the following conservation laws

@z̄Ts+1(z) = @z✓s�1(z), @zT̄s+1(z) = @z̄ ✓̄s�1(z). (2.46)

In di↵erential notation we can alternatively write

js+1 := Ts+1dz � ✓s�1dz̄, ?js+1 = Ts+1dz + ✓s�1dz̄, d ? js+1 = 0, (2.47)

j̄s+1 := ✓̄s�1dz � T̄s+1dz̄, ?j̄s+1 = ✓̄s�1dz + T̄s+1dz̄, d ? j̄s+1 = 0. (2.48)

The conservation of these currents leads to conserved charges

Ps =

Z

c

?js+1, P̄s =

Z

c

?j̄s+1, (2.49)

which are invariant under deformations of the contour c.

Exercise 2.3: verify that the conservation law (2.46) is compatible with the scaling

dimension and spin assignments made in (2.45).

For example, for a U(1) current, the scaling dimension is 1 (s = 0) and we can write

Jz = T1, Jz̄ = �T̄1 =) @µJµ = 0. (2.50)
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In this case, two of the components (✓�1, ✓̄�1) in (2.45) turn out to be redundant and can be

set to zero or assigned to some other U(1) current. On the other hand, when s > 0, we need

at least four components of the current to satisfy the conservation laws, as we have already

observed for the case of the stress tensor where s = 1.

For each of the higher spin currents described above we can define the following scalar

Xs := lim
z!z0

⇥
Ts+1(z)T̄s+1(z

0) � ✓s�1(z)✓̄s�1(z
0)
⇤
. (2.51)

In terms of the currents js+1 and j̄s+1, this can be written more compactly as

Xs dz ^ dz̄ = lim
z!z0

js+1(z) ^ j̄s+1(z
0). (2.52)

We see that the T T̄ operator X1 = T T̄ is one of an infinite family of operators with scaling

dimension 2(s + 1). When s = 0, the operator X0 is marginal and made of the product of two

U(1) currents. On the other hand, when s � 1, all of the Xs operators are irrelevant. Hence,

deforming a QFT by any of the Xs operators with s � 1 changes the UV behavior of the theory.

Following the same steps described in the previous section, it’s not di�cult to show that the

Xs operators are finite and factorize such that

hn|Xs|ni = hn|Ts+1(z)|nihn|T̄s+1(z)|ni � hn|✓s�1(z)|nihn|✓̄s�1(z)|ni = constant. (2.53)

This implies that the Xs operators have fixed scaling dimension 2(s + 1), which allows us to

define an instantaneous deformation analogous to the T T̄ deformation (1.27).

Thus far we have assumed that the theory is Lorentz invariant (or rotationally invariant in

Euclidean signature). In particular, we have required the Xs operators to be scalars, which is

necessary to preserve the Lorentz symmetry under their deformation. However, it turns out

that Lorentz invariance is not strictly necessary although it does simplify the analysis. The two

simplest ways in which we can give up Lorentz invariance are:

(i) breaking Lorentz invariance of the undeformed QFT, case in which Tµ⌫ 6= T⌫µ. In this

case ✓s�1 6= ✓̄s�1, so the more general results presented in this section are immediately

applicable to this case. Relaxing the Tµ⌫ = T⌫µ property of the stress tensor is necessary,

for example, to describe the T T̄ deformation of non-relativistic QFTs.

(ii) breaking Lorentz invariance of the deformed QFT by letting the deforming operator X̃s

transform under Lorentz transformations, i.e. by relaxing the condition that X̃s is a scalar.

The simplest and most well studied example of this approach is the so-called JT̄ defor-

mation which is driven by the JT̄ operator

JT̄ := lim
z!z0

⇥
J(z)T̄ (z0) � J̄(z)✓(z0)

⇤
, (2.54)

where J(z) and J̄(z) are two components of a U(1) current, i.e. (J, J̄) = (Jz, Jz̄) in the

notation of (2.50). This deformation has scaling dimension 3 and is therefore the simplest
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irrelevant deformation we can construct. This deformation is related to the holographic

description of warped AdS3 spacetimes, an interesting class of spacetimes found in the

near-horizon region of extremal Kerr black holes.

Note that the JT̄ and Xs deformations with s 6= 1 are less universal than the T T̄ deformation

since they require the existence of additional conserved currents in the undeformed QFT. In

other words, the T T̄ operator is a universal operator present in any Poincaré-invariant two-

dimensional QFT, whereas the JT̄ and Xs 6=1 operators depend on the details of the QFT.

Exercise 2.4: verify that the JT̄ operator is well defined and factorizes in any

translationally invariant QFT satisfying assumptions (i) – (iii).
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