
Lecture 3

In the previous lecture we derived two crucial properties of the T T̄ operator, namely the finite-

ness and factorization of its expectation value. From this analysis we learned that any Poincaré

invariant QFT defined on the plane or the cylinder has a composite operator with scaling di-

mension 4. We then showed that in theories with higher spin conserved currents it’s possible to

find an infinite number of irrelevant operators Xs analogous to T T̄ . In this lecture we will show

that the T T̄ and Xs deformations of an integrable QFT preserve its integrability. Then, we will

exploit the factorizability of the T T̄ operator to derive a universal di↵erential equation for the

spectrum. Furthermore, we will show that for T T̄ -deformed CFTs this di↵erential equation can

be solved explicitly and yields a square-root structure reminiscent of string theory.

2.3 Integrability

An integrable QFT (IQFT) is characterized by an infinite number of commuting conserved

charges which we denote by Ps and P̄s such that

[Ps, Ps0 ] = [Ps, P̄s0 ] = [P̄s, P̄s0 ] = 0. (2.55)

A generic deformation of an IQFT breaks this property, i.e. it breaks integrability. Interestingly,

deforming an IQFT by any of the Xs operators preserves integrability, at least infinitesimally

in the deformation. We will now show how this comes about.

Let us consider a deformation of an IQFT such that its action IIQFT is deformed by

IIQFT ! IIQFT + �I, �I = µs

Z
d2zXs. (2.56)

Since the Xs operator has scaling dimension 2(s + 1), we have [µs] = L2s, and the deformation

is irrelevant when s � 1. The conserved charges P�, P̄� where defined in the previous lecture

to be given by

P� =

Z

c

?j�+1 =

Z

c

�
T�+1dz + ✓��1dz̄

�
, P̄� =

Z

c

?j̄�+1 =

Z

c

�
✓̄��1dz + T̄�+1dz̄

�
. (2.57)

The fact that all of the P� currents commute implies that their commutator with the higher

spin currents must be given by derivatives of local operators such that

[P�, Ts+1(z)] = @zA�+s(z), [P�, ✓s�1(z)] = @z̄A�+s(z),

[P�, T̄s+1(z)] = @z̄B�,s(z), [P�, ✓s�1(z)] = @zB�,s(z).
(2.58)

where A�+s(z) := A�+s,0(z). Similar expressions exist for P̄�.

The commutators (2.58) imply that the commutator between the charges P�, P̄� and the

1



operator Xs is also a total derivative. In order to see this we first note that

[P�, Xs(z
0)] = lim

z!z0

�
[P�, Ts+1]T̄s+1 � [P�, ✓s�1]✓̄s�1
| {z }

I1(z,z0)

+ Ts+1[P�, T̄s+1] � ✓s�1[P�, ✓̄s�1]
| {z }

I2(z,z0)

�
, (2.59)

where we dropped the coordinate dependence of the currents for convenience. Using the com-

mutators (2.58) we can write I1(z, z0) as follows

I1(z, z0) = @zA�+s(z)T̄s+1(z
0) � @z̄A�+s(z)✓̄s�1(z

0) + A�+s(z)
�
@z0 T̄s+1(z

0) � @z̄0 ✓̄s�1(z
0)

| {z }
0

�

= (@z + @z0)
�
A�+s(z)T̄s+1(z

0)
�

� (@z̄ + @z̄0)
�
A�+s(z)✓̄s�1(z

0)
�
, (2.60)

where we used the conservation law of the currents (2.46) to add the third term in the first line.

Similarly, we find that I2(z, z0) is a total derivative given by

I2(z, z0) = (@z̄ + @z̄0)
�
B�,s(z)Ts+1(z

0)
�

� (@z + @z0)
�
B�,s(z)✓s�1(z

0). (2.61)

As a result, we find that in the limit z ! z0, the commutator [P�, Xs(z)] is a combination of

total derivative terms, meaning that it can be written as

[P�, Xs(z)] = @z̄T̂�+s+1,s(z) � @z ✓̂�+s,s+1(z), (2.62)

for some T̂�+s+1,s(z) and ✓̂�+s,s+1(z).

Exercise 2.5: the operators T̂�+s+1,s and ✓�+s,s+1 can be determined explicitly from

I1(z, z0) and I2(z, z0). Verify that the spin and scaling dimension of these operators

are consistent with those of the commutator appearing on the left-hand side of (2.62).

In order to see that the Xs deformations preserve integrability, we must show that the con-

servation law of the higher spin currents j�+1 and j̄�+1 continues to hold after the deformation.

This is equivalent to showing that the contour integrals
H

?j�+1 and
H

?j̄�+1 vanish within

correlation functions. Focusing on j�+1 we will show that

⌦
⇧iOi(zi) d ? j�+1(z)

↵
= 0 =) J�+1 :=

⌦
⇧iOi(zi)

I

@D
?j�+1(z)

↵
= 0, (2.63)

where @D denotes a closed contour that encloses a region D that is free of operator insertions.

In other other words, the contour @D is chosen so that the Oi(zi) operators are inserted in the

complement D̄ of D, as shown in figure 5.

Before the deformation, J�+1 = 0 since the current j�+1 is conserved. After the deformation,
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Figure 5: The contour @D.

the correlation function becomes

�J�+1 =
⌦
⇧i�µsOi(zi)

I

@D
?j�+1(z)

↵
+
⌦
⇧iOi(zi)

I

@D
?�µsj�+1(z)

↵

� µs

Z
d2w

⌦
Xs(w)⇧iOi(zi)

I

@D
?j�+1(z)

↵
+ O(µ2

s),
(2.64)

where �µsOi and �µsj�+1 denote the change of the operators Oi and the current j�+1 under the

deformation. Since
H
@D ?j�+1(z) = 0 before the deformation, i.e. to zeroth order in µs, the first

term vanishes at O(µs). We will see that we can always choose the flow of the current �µsj�+1

such that the full RHS of (2.64) vanishes at O(µs). In order to see this note that the integral

in the last term of (2.64) can be spit into two contributions, one from region D and one from

its complement D̄

Z
d2w

⌦
Xs(w)⇧iOi(zi)

I

@D
?j�+1(z)

↵
=

Z

D̄
d2wh. . . i +

Z

D
d2wh. . . i. (2.65)

In the first term, the irrelevant operator Xs(w) is inside D̄, i.e. outside the region bounded by

@D. Hence
H

?j�+1(z) = 0 implies that the first term vanishes

Z

D̄
d2w

⌦
Xs(w)⇧iOi(zi)

I

@D
?j�+1(z)

↵
= 0. (2.66)

In the second term, the Xs(w) operator is inside D so we can write

Z

D
d2w

⌦
Xs(w)⇧iOi(zi)

I

@D
?j�+1(z)

↵
=
⌦
⇧iOi(zi)

Z

D
d2w

I

@D
?j�+1(z)Xs(w)

| {z }

↵
(2.67)

=
⌦
⇧iOi(zi)

Z

D
d2w [P�, Xs(w)]

↵
. (2.68)

Exercise 2.6: Verify that the commutator [P�, Xs(w)] is indeed given by the contour

integral
H
c
(T�+1(z)Xs(w)dz + ✓��1(z)Xs(w)dz̄).

We have previously shown that the commutator [P�, Xs(w)] is a total derivative (2.62).
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Introducing the following notation3

ĵ�+2s+1 := T̂�+s+1,sdz � ✓̂�+s,s+1dz̄, (2.69)

this commutator can be written as [P�, Xs(w)] = @µĵµ
�+s

. We thus have,

Z

D
d2w

⌦
Xs(w)⇧iOi(zi)

I

@D
?j�+1(z)

↵
=
⌦
⇧iOi(zi)

I

@D
?ĵ�+2s+1

↵
. (2.70)

Altogether, the deformed correlation function (2.64) is given to linear order in µs by

�J�+1 = �
⌦
⇧iOi(zi)

I

@D
?j�+1(z)

↵
=
⌦
⇧iOi(zi)

I

@D
?(�µsj� � µsĵ�+2s+1)

↵
. (2.71)

Thus, we can guarantee that each of the conserved currents j� of the original IQFT is conserved

after the deformation of any of the irrelevant operators Xs(z) provided that we choose the flow

of the current to be given by

�µsj�+1 = �µsTs+1dz � �µs✓��1dz̄ = µsT̂�+s+1,sdz � µs✓�+s,s+1dz̄ = µsĵ�+2s+1. (2.72)

We have not shown that the IQFT remains integrable after the deformation, i.e. that [P�, Ps].

This is still expected to be the case, however, since Q�,s = [P�, Ps] must either be a new

conserved charge of spin � + s or an old charge such that Q�,s = P�+s. New conserved currents

or a new algebraic structure are not expected to appear for infinitesimal µs so that [P�, Ps] = 0.

2.4 The spectrum

One of the crucial properties of the T T̄ operator is the factorizability of its expectation value

into the product of one-point functions of the stress tensor. These one-point functions vanish

when the undeformed QFT is defined on the plane. On the other hand, when the theory is

put on the cylinder, one-point functions of the stress tensor are related to the energy and

angular momentum of the state. The T T̄ flow equation then implies a universal di↵erential

equation for the deformed spectrum. Moreover, when the undeformed theory is scale invariant,

the di↵erential equation for the spectrum can be solved explicitly and we are able to obtain a

universal expression for the deformed spectrum of T T̄ -deformed CFTs.

Let us consider an eigenstate |ni of the energy and angular momentum in a T T̄ -deformed

QFT on a cylinder of size R such that

z ⇠ z + R, (2.73)

or equivalently x ⇠ x + R. The state |ni satisfies

H|ni = En|ni, P |ni = Pn|ni, (2.74)

3Note that this is not necessarily a conserved current.
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where H is the deformed Hamiltonian. The definition of the T T̄ deformation implies that that

the energy eigenvalues flow according to

@µEn = @µhn|H|ni = �4

Z
dxhn|T T̄ |ni = �4Rhn|T T̄ |ni, (2.75)

where the minus sign discrepancy with (1.27) originates from the fact that we are working in

Euclidean signature. Note that in the last term of (2.75) we used the fact that the expectation

value hn|T T̄ |ni is a constant. Consequently, we learn that the flow of the energy is determined

by the expectation value of the T T̄ operator.

We would like to use (2.75) together with the factorizability of T T̄ to obtain a di↵erential

equation for the spectrum. In order to do this we note that the energy and angular momentum

of a T T̄ -deformed QFT are related to the Ttt and Ttx components of the stress tensor via

hn|Ttt|ni = �
En

R
, hn|Ttx|ni =

iP

R
, hn|Txx|ni = �

@En

@R
. (2.76)

Exercise 2.7: The first two terms in the above equation can be obtained from the

usual expression for the conserved charge Q⇠ associated with translations xµ
! xµ+⇠µ

via Q⇠ = i
R

dxhn|Ttµ|ni⇠µ. Derive the third term.

The factorizability of the stress tensor then implies

hn|T T̄ |ni = hn|Tzz|nihn|Tz̄z̄|nihn|Tzz̄|ni
2

= �
1

4

✓
En

@En

@R
+

P 2
n

R2

◆
, (2.77)

where we used

Tzz =
1

4

�
Txx � Ttt � 2iTxt

�
, Tz̄z̄ = T ⇤

zz, Tzz̄ =
1

4

�
Txx + Ttt

�
. (2.78)

Altogether, we find that the deformed energy and angular momentum satisfy

@µEn = En

@En

@R
+

P 2
n

R
, @µPn = 0. (2.79)

This partial di↵erential equation is known as the inviscid Burger’s equation with an additional

driving force corresponding to the P 2
n/R term. Note that the angular momentum is not changed

by the deformation due to the fact that it must be quantized in units of R�1, that is

Pn =
m

R
, m 2 Z. (2.80)

The spectrum of T T̄ -deformed CFTs

When the undeformed QFT is scale invariant, it’s possible to solve (2.79) and obtain a universal

expression for the deformed spectrum. In this case, the di↵erential equation (2.79) turns out to
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be equivalent to an algebraic (quadratic) equation that can be easily solved. This follows from

the fact that in a CFT the only dimensionful scale is the size of the cylinder so that REn is a

dimensionless quantity. Consequently, REn can only depend on dimensionless variables so that

REn(µ) = e(µ̂), RPn(µ) = p(µ̂), µ̂ =
µ

R2
, (2.81)

where e, p, and µ̂ are the dimensionless energy, angular momentum, and deformation parameter.

We then have

@µEn =
1

R
@µ(REn) =

1

R3
@µ̂e, (2.82)

@REn = @(R�1e) = �
1

R2
(e + 2µ̂@µ̂e). (2.83)

As a result, the inviscid Burguer’s equation (2.79) can be recast into

@µ̂(e + µ̂e2 � µ̂p2) = 0, (2.84)

which yields a quadratic equation for the deformed dimensionless energy

e(µ̂) + µ̂e(µ̂)2 � µ̂p2 = e(0). (2.85)

Solving this equation we find that the spectrum of T T̄ -deformed CFTs is given by

En(µ) = �
R

2µ

 
1 �

r
1 +

4µEn(0)

R
+

4µ2Pn(0)2

R2

!
, P (µ) = P (0). (2.86)

The spectrum is plotted in figure 6.

Figure 6: The deformed energies of T T̄ -deformed CFTs as a function of the deformation
parameter µ. The orange lines denote the maximum/minimum value of the deformed energies
beyond which the spectrum becomes complex.

The deformed spectrum (2.86) is universal, meaning that it’s valid for any T T̄ -deformed
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CFT on the cylinder. This is one way in which the T T̄ deformation is solvable. In particular,

for an undeformed CFT with central charge c, the undeformed energy and angular momentum

are given by

En(0) =
1

R

⇣
hn + h̄n �

c

12

⌘
, Pn(0) =

1

R

�
hn � h̄n

�
, (2.87)

where (hn, h̄n) are the conformal weights of the state |ni. The conformal weights are the

eigenvalues of the (L0, L̄0) modes of the Virasoro algebra we encountered earlier, which on the

cylinder yield

L0|ni =
⇣
hn �

c

24

⌘
|ni, L̄0|ni =

⇣
h̄n �

c

24

⌘
|ni. (2.88)

In terms of these variables, the T T̄ spectrum becomes

En(µ) = �
R

2µ

 
1 �

s

1 +
4µ

R2

✓
hn + h̄n �

c

12

◆
+

4µ2

R4
(hn � h̄n)2

!
. (2.89)

There are several interesting features about this spectrum. First, let us consider a string

propagating in a D-dimensional flat spacetime where one of the coordinates is compact with

size R. The mass of this string can be obtained by solving the Virasoro constraints and is given

in terms of the excitation levels (N, N̄) and winding w of the string by

m =

s
w2R2

↵02 +
2

↵0

✓
N + N̄ �

D � 2

12

◆
+

(N � N̄)2

w2R2
. (2.90)

Here 1/↵0 is proportional to the string tension and has dimensions [↵0] = L2. The first term

in (2.90) is the potential energy of a winding string which naturally depends on the number of

times the string winds the compact coordinate. The second term in (2.90) is the contribution

to the excitations of the string and the third corresponds to the contribution of the angular

momentum. This formula is remarkably similar to (2.89). In fact, up to an overall constant

shift, the T T̄ energy (2.89) and the mass of the string (2.90) agree upon the identification

(hn, h̄n) = (N, N̄), w = 1, c = D � 2, µ =
↵0

2
. (2.91)

This is the first hint that the T T̄ -deformation is related to quantum gravity. In fact, we will

see that the T T̄ deformation of a free scalar field yields the classical Nambu-Goto action for a

string in a three-dimensional flat spacetime. This model has several gravitational features and

has been dubbed “the simplest theory of quantum gravity”.

Exercise 2.8: How would you modify the dictionary to match the mass of a string

with a di↵erent amount of winding? There are actually two ways, a simple way and

a slightly more di�cult one. Give a physical interpretation to the simple one. The

more di�cult one will reappear later in the class.
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Another interesting feature of (2.89) is that it depends critically on the sign of the defor-

mation parameter. When µ > 0, the spectrum is well behaved at all energies provided that µ

satisfies the bound

µ
⇣
h0 + h̄0 �

c

12

⌘
� �R2, (2.92)

where (h0, h̄0) denote the minimum values of the conformal weights. For a unitary CFT with

a normalizable vacuum we have h0 = h̄0 = 0 and there’s a maximum value of the deformation

parameter that is given by

µ 
3R2

c
. (2.93)

We will see in future lectures that this bound implies the existence of a maximum (Hagedorn)

temperature. On the other hand, when µ < 0, the spectrum becomes complex at high energies

where

En(0) >
R

4|µ|
+

|µ|

R
Pn(0)2. (2.94)

This feature of T T̄ -deformed CFTs has a geometrical interpretation in holography where it

corresponds either to the existence of a cuto↵ or the emergence of closed timelike curves (CTCs).

Finally, let us return to a statement made in the first lecture about the nature of the T T̄

deformation. There, we mentioned that the T T̄ deformation is not an RG flow and it does not

add any new degrees of freedom. In particular, the theory does not flow to a UV fixed point

and is in fact not a local QFT. These features of T T̄ -deformed QFTs are already visible in the

spectrum (2.89). In order to see this we note that in a CFT, the ground state energy satisfies

RE0 = h0 + h̄0 �
c

12
. (2.95)

Thus, in a unitary CFT with a normalizable vacuum, the ground state energy is proportional

to the central charge RE0 = �c/12. It is not di�cult to verify that in the IR limit R ! 1, the

deformed T T̄ energy (2.89) reduces its undeformed value

RE0(µ)
��
R!1 ! �

c

12
. (2.96)

One way to see this is that the R ! 1 limit is equivalent to the µ ! 0 limit, i.e. to the limit

where we recover the undeformed CFT. In contrast, the UV limit R ! 0 is not sensible, as

the condition (2.93) is violated. In this limit the ground state energy becomes complex and we

don’t recover the answer expected for a CFT4

RE0(µ)
��
R!0

! complex. (2.97)

4These statements apply to the case µ > 0. In the case µ < 0, the R ! 0 limit yields RE0(µ)
��
R!0

! 0. In
this case the spectrum becomes complex at high energies, so we cannot give this result a consistent interpretation.
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