
Lecture 7

In this lecture we will consider the symmetric product orbifold of a CFT. First we will define

and motivate the study of these theories from the point of view of holography. We will then

describe in detail the untwisted sector of the theory and its contribution to the torus partition

function.

4 Symmetric product orbifolds

Let us begin by describing the symmetric product orbifold (or symmetric orbifold for short) of

a two-dimensional CFT. Symmetric orbifolds are defined by taking N copies of a seed CFT M

and symmetrizing the result (see figure 10)

SymN
M :=

M
N

SN

, (4.1)

N

Figure 9: The symmetric product orbifold SymN
M consists of N symmetrized copies of M.

This means, in particular, that the Hilbert space of a symmetric orbifold consists only of states

that are invariant under the action of the symmetric group SN . Symmetric orbifolds have

several properties that make them interesting from a holographic point of view. In particular,

(i) symmetric orbifolds have a central charge that scales linearly with N . If we denote the

central charge of the seed CFT M by c0, then the central charge of SymN
M is

c = Nc0. (4.2)

Hence, as N ! 1, we obtain a theory with a large central charge which, as we have

discussed previously, is a necessary feature of a holographic CFT.

(ii) In addition, symmetric orbifolds have a universal torus partition function in the large-c

limit which matches, as we will see, the partition function of three-dimensional Einstein

gravity with a negative cosmological constant.
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(iii) Finally, the correlation function of SymN
M factorize in the large-N limit, meaning that

its two, three, and four-point functions scale with N as

hOiOii ⇠ N0, (4.3)

hOiOjOki ⇠
1

N1/2
, (4.4)

hOiOjOkOli ⇠
1

N
, (4.5)

which is the same behavior found in gravitational theories in the semiclassical limit using

the holographic dictionary Gn ⇠ 1/c.

Exercise 4.1: find the GN -scaling of tree-level amplitudes with two, three, and four

external vertices using the perturbative gravitational action of Einstein gravity in

three dimensions (the analog of (1.1)). Confirm that these reproduce the large-N

behavior of the two, three, and four-point functions using the holographic dictionary.

However, symmetric orbifolds also have holographically undesirable properties, including an

infinite tower of massless higher spin currents, and as we will describe later on, a Hagedorn

growth of low energy states in the large-N limit. Neither of these are properties of gravity

in the semiclassical limit. For this reason, symmetric orbifolds cannot describe semiclassical

gravity but are still relevant, as they may lie on the same moduli space as a holographic CFT.

An example of this that will be relevant later on is the following. The symmetric orbifold

of T 4, i.e. of the supersymmetric theory consisting of 4 free bosons and 4 free fermions, is

dual to the tensionless limit of string theory on AdS3 ⇥ S3
⇥ T 4 supported by NS-NS flux (by

an antisymmetric rank-2 field). An exactly marginal deformation of the symmetric orbifold

is expected to remove the massless higher spin currents from the spectrum and deform the

theory to the point where it meets all of the necessary conditions to be holographically dual to

semiclassical gravity in the aforementioned background.

O�=2

SymN
M

holographic

CFT

Figure 10: The symmetric product orbifold SymN
M consists of N symmetrized copies of M.

4.1 Partition function

Let us now consider the torus partition function of SymN
M, which we will denote by

ZN (⌧, ⌧̄) = Tr (qh�c/24q̄h̄�c/24). (4.6)
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The partition function receives contributions from two types of states, so-called untwisted and

twisted states. The first type of states are a result of taking the product of N copies of the seed

CFT M. Whereas the second type of states originate from the symmetrization procedure. Let

us first consider the contribution of the untwisted states.

Untwisted sector

The untwisted sector of SymN
M consists of the symmetrized product of states �(in) from each

copy M in the product theory M
N such that

� = Sym(⌦N

n=1�
(in)), (4.7)

where n labels di↵erent copies of M and in denotes the state in the nth copy. For example,

when N = 2 we have states of the form

� =
n

�(i1) ⌦ �(i2),
1

2

�
�(i1) ⌦ �(j2) + �(j1) ⌦ �(i1)

�o
, (4.8)

where i 6= j. As a result of the symmetrization procedure, there is a vast reduction on the

number of states in SymN
M compared to the product theory M

N . In order to illustrate this,

consider the case where the seed CFT M has only m states �(i1) with i1 = {1, . . . , m}. Then

the number of states in SymN
M is given by

mX

k=1

✓
m

k

◆✓
N � 1

k � 1

◆
=

✓
N + m � 1

m � 1

◆
⇠

N � m

Nm�1

(m � 1)!
, (4.9)

which grows polynomially in N when N � m. In contrast, in the product theory M
N the

number of states grows exponentially in N as mN .

Among the states in the untwisted sector we can distinguish between single particle and

multiparticle states. The former corresponds to states where all but one state is the vacuum,

which we denote by I. These states take the form

� = Sym(�(1)
⌦ I ⌦ · · · ⌦ I), (4.10)

and have conformal weight

h� = h
�(1) , h̄� = h̄

�(1) . (4.11)

We can think of the single-particle state (4.11) as the sum of the state �(1n) from each copy of

SymN
M. The stress tensor T is one example of a single-particle state that is given by the sum

of the stress tensors T (i) from each copy of the symmetric orbifold

T = Sym(T (1)
⌦ I ⌦ · · · ⌦ I) =

NX

i=1

T (i), (4.12)
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and similarly for T̄ =
P

N

i=1 T̄ (i). Using the fact that the OPE of the stress tensor in the seed

CFT M is given by

T (1)(z)T (1)(0) ⇠
c0
2z4

+
2T (1)(z)

z2
+

@T (1)(z)

z
, (4.13)

it’s not di�cult to verify that the OPE of the stress tensor of SymN
M is given by

T (z)T (0) =
NX

i=1

T (i)(z)T (i)(0) ⇠
Nc0
2z4

+
2T (z)

z2
+

@T (z)

z
. (4.14)

where we have used the fact that T (i)(z)T (j)(0) = 0 when i 6= j, i.e. the OPE between fields in

di↵erent copies of SymN
M don’t interact with each other. It follows that the central charge of

the symmetric orbifold is indeed linear in N and givne by c = Nc0.

Multiparticle states, on the other hand, are states made of the product of two or more states

from di↵erent copies of SymN
M and take the general form (4.7). In particular, their conformal

weights are given by the sum of the conformal weights from each copy, that is

h� =
nX

j=1

h
�
(ij) , h̄� =

nX

j=1

h̄
�
(ij) . (4.15)

For example, a two-particle state made of the components of the stress tensor is

Sym(T (1)
⌦ T (2)

⌦ I ⌦ · · · ⌦ I) =
NX

i,j

T (i)T (j). (4.16)

Exercise 4.2: one reason that symmetric orbifolds cannot be dual to semiclassical

theories of gravity in three-dimensions is that, in the large-N limit, they contain an

infinite number of higher spin currents. Use the OPE of the stress tensor to show

that W4(z) :=
P

N

i=1[(T
(i)T (i))(z) �

3
10@

2
zT

(i)(z)] � ↵
P

N

i 6=j
T (i)(z)T (j)(z) is a spin-4

current for an appropriate choice of ↵. Above (AB)(z) :=
H

dw

2⇡iA(w)B(z) is the

normal-ordered product of operators (see chapter 6 of Di Francesco et. al. for details).

Find for which value of c0 is ↵ = 0. This value corresponds to a well-known CFT

with N = 1, which would suggest this model has a spin-4 current, in contradiction to

what’s found in the spectrum. Verify that for this value of c0 the two-point function

of W4 vanishes, indicating that it corresponds to a null state that must be modded

out of the spectrum.

We would now like to consider the contribution of single and multiparticle untwisted states

to the partition function of SymN
M. For generic states (4.7) where all of the �(in) are di↵erent,

their contribution to the partition function can be obtained from 1
N !Z(⌧, ⌧̄)N where Z(⌧, ⌧̄) is

the partition function of the seed CFT M. This product of partition functions miscounts several

states, however, since Z(⌧, ⌧̄)N contains states that are symmetric under subgroups of SN . The
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simplest example of these states are states of the form

� = ⌦
N

n=1�
(1), (4.17)

where �(1) is some state in the seed CFT. Such states are invariant under any element of the

symmetric group so dividing Z(⌧, ⌧̄)N by N ! not only miscounts them, but yields an unphys-

ical noninteger number for these states. In order to account for this kind of states we can

either subtract them from Z(⌧, ⌧̄)N before normalizing by N ! or add additional contributions

to 1
N !Z(⌧, ⌧̄)N that fixes their normalization.

In order to illustrate this and motivate the general formula, let’s work out the example with

N = 3 in detail.11 When N = 3, we have the following kinds of untwisted states

(i) �(i) := �(i)
⌦ �(i)

⌦ �(i)

This kind of states consist of three copies of the same field �(i), one from each copy of

Sym3
M. The simplest example of such a state is the vacuum, for which �(i) = I. The

conformal weight of these type of states is

h(i) = 3h
�(i) , h̄(i) = 3h̄

�(i) . (4.18)

Consequently, their contribution to the partition function can be obtained from the seed

partition function Z(⌧, ⌧̄) by multiplying the modular parameter by 3. In other words,

the contribution of these states to the partition function, which we denote by Z(3)(⌧, ⌧̄),

is given by

Z(3)(⌧, ⌧̄) = Z(3⌧, 3⌧̄). (4.19)

(ii) �(i,j) := Sym(�(i)
⌦ �(i)

⌦ �(j)) with i 6= j

These states consist of two copies of �(i) and one copy of �(j) such that the conformal

weights are

h(i) = 2h
�(i) + h

�(j) , h̄(i) = 2h̄
�(i) + h̄

�(j) . (4.20)

Therefore, their contribution to the partition reads

Z(2)(⌧, ⌧̄) := Z(2⌧, 2⌧̄ ; µ)Z(⌧, ⌧̄) � Z(3)(⌧, ⌧̄), (4.21)

where Z(3)(⌧, ⌧̄) subtracts additional states with weights (h(i), h̄(i)) = (3h
�(i) , 3h̄

�(i)) from

Z(2⌧, 2⌧̄)Z(⌧, ⌧̄).

(iii) �(i,j,k) := Sym(�(i)
⌦ �(j)

⌦ �(k)) with i 6= j 6= k

These states consist of di↵erent fields from di↵erent copies of Sym3
M such that their

conformal weights are given by the general formulae (4.15). Their contribution to the

11The example N = 2 is too simple and the same as the Z2 orbifold of M.
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partition function Z(1)(⌧, ⌧̄) is therefore given by

Z(1)(⌧, ⌧̄) := 1
3!

⇥
Z(⌧, ⌧̄)3 � 3Z(2)(⌧, ⌧̄) � Z(3)(⌧, ⌧̄)

⇤
, (4.22)

where we have once again subtracted the contributions of �(i,j) and �(i) from Z(⌧, ⌧̄)3.

Altogether, the partition function in the untwisted sector of Sym3
M reads

Zuntwisted
3 (⌧, ⌧̄) =

3X

i=1

Z(i)(⌧, ⌧̄) =
1

3!

h
Z(⌧, ⌧̄)3 + 3Z(2⌧, 2⌧̄)Z(⌧, ⌧̄) + 2Z(3⌧, 3⌧̄)

i
. (4.23)

In order to understand the meaning of this partition function we need to introduce some

features of the symmetric group SN . The symmetric group contains N ! elements that belong to

one of p(N) conjugacy classes. The conjugacy classes of SN consist of the product of Zni cycles

with ni = 1, . . . , N such that
P

i
ni = N .12 As a result, the number of conjugacy classes p(N)

is the number of partitions of N whose generating functional is
P1

i=1 p(i)xi =
Q1

j=1(1 � xj)�1.

Let {k1, . . . , kN} label each of the conjugacy classes such that kn counts the number of Zn cycles

in the class, i.e.

{k1, . . . , kN} :=
NY

i=1

Zki
i

= Ik1 · · ·Zkn
n ,

X

i

kini = N. (4.24)

Each conjugacy class {k1, . . . , kN} has the following number of elements

N !
Q

N

n=1 nknkn!
, (4.25)

where the factors of n count the size of each Zn cycle while kn! counts the permutations of the

Zn cycles. It’s not di�cult to show that the summing (4.25) over all conjugacy classes yields

the rank of SN , namely N !.

Exercise 4.3: show that the sum of (4.25) over conjugacy classes of SN is equal to

N !, i.e. show that
P

{k1,...,kN}
1QN

n=1 n
knkn!

= 1.

Let us now return to our S3 example. In this case we have six elements that belong to one

of three conjugacy classes such that

elements size conjugacy class {k1, k2, k3}

abc 1 I3 {3, 0, 0}

bac, cba, acb 3 I · Z2 {1, 1, 0}

bca, cab 2 Z3 {0, 0, 1}

(4.26)

12Here Z1 = I is identified with the trivial conjugacy class whose only element is the indentity.

6



The cycle index I3 of S3 packages all of this information into the following object

I3 = I3 + 3I · Z2 + 2Z3. (4.27)

We see that if we make the following identification

I $ Z(⌧, ⌧̄), Z2 $ Z(2⌧, 2⌧̄), Z3 $ Z(3⌧, 3⌧̄), (4.28)

then up to a normalization, the untwisted partition function (4.23) matches the cycle index of

S3 (4.27).

For general N , the untwisted sector torus partition function of SymN
M is proportional to

the cycle index of SN such that

Zuntwisted
N (⌧, ⌧̄) =

IN
N !

=
1

N !

X

{k1,...,kN}

N !
Q

N

n=1 nknkn!

NY

n=1

Z(n⌧, n⌧̄)kn , (4.29)

where
P

i
kini = N and we have used the following identification between partition functions

and cycles of SN

Zn $ Z(n⌧, n⌧̄). (4.30)

Note that this formula is universally valid for the untwisted sector of any SymN
M as it relies

only on the structure of SN and not on the details of the seed CFT. In particular, we can use the

generating functional of the cycle index of SN to write a generating functional for the untwisted

partition function (4.29)

Z
untwisted(⌧, ⌧̄ ; p) :=

1X

N=0

pNZuntwisted
N (⌧, ⌧̄) = exp

✓ 1X

n=1

pn

n
Z(n⌧, n⌧̄)

◆
. (4.31)

Exercise 4.4: classify the untwisted states of Sym4
M, find their contribution to

the torus partition function, and verify that it matches the cycle index of S4 up to a

normalization.
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