
Lecture 8

In this lecture we continue with our study of symmetric product orbifolds. We begin by de-

scribing the twisted sector of these theories and its contribution to the torus partition function.

We then show that these states are necessary to preserve modular invariance of the theory. One

consequence of modular invariance is that the partition function is universal at large N without

the necessity of imposing a sparseness condition on the light states. Finally, we consider the

symmetric product orbifolds of T T̄ -deformed CFTs, construct their torus partition function,

and obtain the spectrum of twisted states. We will see that modular invariance also implies a

universal torus partition function of symmetric product orbifolds of T T̄ -deformed CFTs.

4.1.2 Twisted sector

The twisted sector of SymN
M consists of single and multi-particle states �g made up of one or

more twisted states �(n) with n � 2 such that

�g = Sym(⌦N

i=1�(ni)),
X

i

ni = N, (4.32)

where �(1) corresponds to an untwisted state from a copy of SymN
M. Each twisted state �(n)

is identified with a Zn cycle of SN . As a result, every state �g in the twisted sector corresponds

to one of the conjugacy classes of SN , i.e. it corresponds to a product of Zni cycles. The twist

field �g(z) induces the following boundary conditions on the operators �(i) from each copy of

the theory

�(j)(e2⇡iz)�g(0) = �(g(j))�g(0), g 2 SN . (4.33)

As a result, we can think of a twist field as gluing di↵erent copies of the theory. For example,

the simplest twisted state in a SymN
M is

�Z2 = Sym(�(2) ⌦ I ⌦ · · · ⌦ I). (4.34)

Inserting this operator glues two copies of SymN
M such that, when we take the double trace

operator �(1)
⌦�(2)

⌦I⌦ · · ·⌦I around z = 0, we end up with the operator �(2)
⌦�(1)

⌦I⌦ · · ·⌦I.

For each field with conformal weights (h, h̄) in the seed CFT M, there is a twisted field �(n)

with conformal weights (h(n), h̄(n)) given by

h(n) =
h

n
+

c0
24

✓
n �

1

n

◆
, h̄(n) =

h̄

n
+

c0
24

✓
n �

1

n

◆
, h(n) � h̄(n) 2 nZ. (4.35)

One way to derive these formulae is by requiring modular invariance of the torus partition

function, as we’ll describe shortly. In order to gain an intuition for (4.35), consider instead the

twisted energies obtained by adding the Casimir energy for the number of copies glued by the
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twist operator, that is

E(n)
L

= h(n) �
nc0
24

=
EL

n
, E(n)

R
= h̄(n) �

nc0
24

=
ER

n
. (4.36)

These energies reflect the fact that the twist operator is in some sense spread among n copies

of SymN
M, as illustrated in figure 11. We also note that insertions of the twist fields �(n) in

correlation functions of SymN
M can be dealt with by mapping the base space the theory is

defined in to an n-sheeted branched covering via the covering map z ! tn where t is given by

tn = z1/ne2⇡ik/n. (4.37)

Under this map each copy of an untwisted field �(i) is mapped to a region of the cover space,

while �(n) is mapped to a field at the origin with conformal weights (4.35). This is illustrated

in figure ??.

�(2) �(3)
⌦ �(4)

⌦

E(2)
L,R =

EL,R

2

Figure 11: The energy of a twist-n state in a symmetric orbifold can be understood as the
energy of state in the seed CFT M that is spread among n-copies of SymN

M, as illustrated
above for n = 2.

Exercise 4.5: in theories with N � 2 supersymmetry, an exactly marginal operator

can be obtained from the supersymmetric descendant of a chiral primary with confor-

mal weight h = 1/2. Use this fact to find the maximum allowed seed central charge

for each value of the twist. Note that there is only a finite number of twists you need

to consider since unitarity constraints the central charge to be c0 � 1. Using this in-

formation, can you deduce the twist of the operator needed to deform the symmetric

orbifold of T 4 discussed in the previous lecture?

Let us now consider the contribution of the twisted states to the torus partition function of

SymN
M. These states are needed to preserve the modular invariance of the partition function,

the latter of which is required for consistency of the CFT. The partition function of the untwisted

states (4.29) is not invariant under modular transformations because each of the Z(n⌧, n⌧̄) terms

with n � 2 is not modular invariant. While (4.29) is invariant under modular T transformations

(⌧ 7! ⌧ + 1), it fails to be invariant under S transformations for which ⌧ 7! �1/⌧ since

T · Z(n⌧, n⌧̄) = Z(n⌧, n⌧̄), (4.38)
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S · Z(n⌧, n⌧̄) = Z

✓
�

n

⌧
, �

n

⌧̄

◆
= Z

✓
⌧

n
,
⌧̄

n

◆
(4.39)

where we used the modular invariance of the seed partition function Z(⌧, ⌧̄). In order to render

the partition function invariant under modular transformations, we need to add additional terms

to the partition function that correspond to the twisted states characteristic of orbifold theories.

Our strategy to make (4.29) modular invariant is to make each of the Z(n⌧, n⌧̄) partition

functions invariant under modular transformations. This can be accomplished by adding all of

the modular images of Z(n⌧, n⌧̄) that are not themselves equal to Z(n⌧, n⌧̄). For convenience,

let us assume that n is prime. Whereas Z(n⌧, n⌧̄) is not invariant under S transformations, the

following combination of modular images is S-invariant

Z(n⌧, n⌧̄) + Z

✓
⌧

n
,
⌧̄

n

◆
. (4.40)

This combination of partition functions is not invariant under T transformations however, since

for any integers k and ↵ 2 [1, n � 1] we have

T
↵+kn

· S · Z(⌧, ⌧̄) = Z

✓
⌧ + ↵

n
,
⌧̄ + ↵

n

◆
. (4.41)

Therefore, the following combination of modular images is invariant under T , S, and T · S

transformations

Z(n⌧, n⌧̄) +
n�1X

↵=0

Z

✓
⌧ + ↵

n
,
⌧̄ + ↵

n

◆
. (4.42)

It turns out that the combination of partition functions (4.42) is modular invariant under any

combination of T and S transformations. In order to see this, let us consider an S transformation

of (4.41)

S · T
↵+kn

· S · Z(⌧, ⌧̄) = Z

✓
↵⌧

n
�

1
n

⌧
,
↵⌧̄

n
�

1
n

⌧̄

◆
= Z

✓
↵⌧̃ �

1
n

n⌧̃
,
↵˜̄⌧ �

1
n

n˜̄⌧

◆
. (4.43)

where we have defined ⌧̃ = ⌧/n. It’s convenient to perform several modular T̃ transformations

⌧̃ 7! ⌧̃ + 1/n of (4.43) to put it into the following form13

S · T
↵+kn

· S · Z(⌧, ⌧̄) = (eT )
↵̃
n · Z

✓
↵⌧̃ �

1
n
(1 + ↵↵̃)

n⌧̃ � ↵̃
,
↵¯̃⌧ �

1
n
(1 + ↵↵̃)

n¯̃⌧ � ↵̃

◆
, (4.44)

where ↵̃ is a positive integer. The partition function on the RHS of (4.44) can be written as

Z

✓
↵⌧̃ �

1
n
(1 + ↵↵̃)

n⌧̃ � ↵̃
,
↵¯̃⌧ �

1
n
(1 + ↵↵̃)

n¯̃⌧ � ↵̃

◆
= Z

✓
a⌧̃ + b

c⌧̃ + d
,
a¯̃⌧ + b

c¯̃⌧ + d

◆
, (4.45)

13Note that a eT transformation is equivalent to the standard modular T transformation ⌧ 7! ⌧ + 1.
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where the a, b, c, and d parameters are given by

a = ↵, b = �
1

n
(1 + ↵↵̃), c = n, d = �↵̃, ↵, ↵̃, n 2 Z. (4.46)

These parameters satisfy ad � bc = 1 and would correspond to an SL(2,Z) transformation

provided that b is an integer. It turns out that when n is prime and ↵ 2 [1, n � 1] is co-prime

with n, it’s always possible to find a pair of integers (↵̃, k̃) such that

↵↵̃ + 1 = k̃n. (4.47)

This is known as Bezout’s identity. Bezout’s identity is telling us that b is an integer and that,

given any ↵ 2 [1, n � 1], there is a unique integer ↵̃ 2 [1, n � 1] satisfying (4.47). The converse

is also true, meaning that there is a one-to-one map between the integers ↵ and ↵̃ if both are

restricted to the region [1, n � 1]. Since the a, b, c, and d parameters describe a bona fide

SL(2,Z) transformation under which the seed partition function Z(⌧, ⌧̄) is modular invariant,

we have

S · T
↵+kn

· S · Z(⌧, ⌧̄) = (eT )
↵̃
n · Z(⌧̃ , ¯̃⌧) = T

↵̃+kn
· S · Z(⌧, ⌧̄) (4.48)

where in the last equality we added a T
kn term since it leaves S · Z(⌧, ⌧̄) invariant. This is

illustrated in figure ??

We have shown that under a modular S transformation, the partition function function

T
↵+kn

· S · Z(⌧, ⌧̄) with ↵ 2 [1, n � 1] transforms into T
↵̃+kn

· S · Z(⌧, ⌧̄) with a generically

di↵erent ↵̃ 2 [1, n � 1]. As a result, the linear combination of partition functions featured

in (4.42) is modular invariant under any sequence of T and S transformations, and hence

invariant under any modular transformation. The combination of modular images in (4.42) can

be obtained by the action of the Hecke operator T 0
n on the seed partition function Z(⌧, ⌧̄).14

For an arbitrary integer n, the Hecke operator is defined by

(T 0
nZ)(⌧, ⌧̄) =

X

�|n

��1X

↵=0

Z

✓
n⌧ + ↵�

�2
,
n⌧̄ + ↵�

�2

◆
, (4.49)

where �|n are the divisors of n. We see that when n is prime the action of the Hecke operator

reduces to

(T 0
nZ)(⌧, ⌧̄) = Z(n⌧, n⌧̄) +

n�1X

↵=0

Z

✓
⌧ + ↵

n
,
⌧̄ + ↵

n

◆
, n 2 P, (4.50)

which is precisely the combination of modular images we found earlier in (4.42).

We will now prove that the Hecke transform of Z(⌧, ⌧̄) is modular invariant. The essence of

14We are using the convention of the Hecke operator usually found in the high energy physics literature, the
latter of which di↵ers from the standard one Tn by an overall rescaling, T 0

n = nTn.
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the proof lies on the fact that the Hecke transform of Z(⌧, ⌧̄ ; µ) can be equivalently written as

(T 0
nZ)(⌧, ⌧̄ ; µ) =

X

A1

Z(A1⌧, A1⌧̄), (4.51)

where we sum over a complete set of inequivalent elements of �(n), which is the set of all

transformations ⌧ 7! M⌧ = ⇢⌧+�

⌘⌧+�
with ⇢� � ⌘� = n and ⇢, �, ⌘, � 2 Z. The inequivalent

elements of �(n) can be parametrized by the upper triangular matrices

A1 =

 
⇢1 �1

0 �1

!
, ⇢1�1 = n, �1 2 Z (mod �1). (4.52)

Exercise 4.6: verify that the properties of ⇢1, �1, and �1 given in (4.52) imply that

(4.51) is equivalent to (4.49) with (⇢1, �1, �1) = (n/�, ↵, �).

Theorem 6.9 of Apostol’s book on Modular Functions states that, given A1 2 �(n) and a

standard modular transformation represented by the matrix M1 2 �(1), it is always possible to

find M2 2 �(1) and an upper triangular matrix A2 2 �(n) such that

A1M1 = M2A2, (4.53)

where the map is one-to-one. These properties imply that, under a modular transformation

⌧ 7! M1⌧ = a1⌧+b1
c1⌧+d1

, the Hecke-transformed partition function (4.51) satisfies

(T 0
nZ)

✓
a1⌧ + b1
c1⌧ + d1

,
a1⌧̄ + b1
c1⌧̄ + d1

◆
=
X

A1

Z(A1M1⌧, A1M1⌧̄)

=
X

A2

Z(M2A2⌧, M2A2⌧̄)

=
X

A2

Z(A2⌧, A2⌧̄), (4.54)

where we used (4.53) in the second line, and the modular invariance of Z(⌧, ⌧̄) in the third

line. Note that since the map between A1 and A2 in (4.53) is one-to-one, the sum over A1 in

the first line of (4.54) can be written as a sum over A2 in the second line, and both sums run

over all inequivalent elements of �(n). Consequently, the third line of (4.54) is nothing but

(T 0
nZ)(⌧, ⌧̄ ; µ), so that the Hecke transform of the partition function (4.51) is modular invariant

for any positive integer n, namely

(T 0
nZ)

✓
a⌧ + b

c⌧ + d
,
a⌧̄ + b

c⌧̄ + d

◆
= (T 0

nZ)(⌧, ⌧̄). (4.55)

Let us come back to the partition function of SymN
M. We have seen that the contribution

of the untwisted states is universal, i.e. valid for any symmetric orbifold, and given by (4.29).

This partition function is not modular invariant because each of the Z(n⌧, n⌧̄) terms in (4.29)
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with n � 2 is not invariant under modular S transformations. Nevertheless we have seen that

there is a combination of modular images of Z(n⌧, n⌧̄) obtained from the Hecke transform that is

modular invariant. Consequently, the untwisted partition function (4.29) can be made modular

invariant by replacing each of the Z(n⌧, n⌧̄) by its modular invariant completion via the Hecke

transform, namely

Z(n⌧, n⌧̄) 7! (T 0
nZ)(n⌧, n⌧̄). (4.56)

As a result, the modular invariant partition function ZN (⌧, ⌧̄) of any symmetric product orbifold

SymN
M is given by

ZN (⌧, ⌧̄) =
X

{k1,...,kN}

1
Q

N

n=1 nknkn!

NY

n=1

(T 0
nZ)(⌧, ⌧̄)kn , (4.57)

where
P

i
kini = N and we have defined (T 0

1Z)(⌧, ⌧̄) = Z(⌧, ⌧̄) for convenience. We stress that

(4.57) is universal and given by the cycle index of SN provided that we identify each cycle Zn

of SN with the nth Hecke transform of the seed partition function

Zn $ (T 0
nZ)(⌧, ⌧̄). (4.58)

This means, in particular, that we can use the generating functional of the cycle index to write

a generating functional for the partition function (4.57),

Z(⌧, ⌧̄) :=
1X

N=0

pNZN (⌧, ⌧̄ ; µ) = exp

✓ 1X

n=1

pn

n
(T 0

nZ)(⌧, ⌧̄)

◆
, (4.59)

where, in analogy with the untwisted partition function of SymN
M, we define Z0(⌧, ⌧̄) = 1 and

Z1(⌧, ⌧̄) = Z(⌧, ⌧̄).
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