Single-trace $T \bar{T}$ deformations and string theory

Lecture II

Luis Apollo

University of Amsterdam
\& Bimsa
$3^{\text {rd }}$ Young Frontiers Meeting September 12.14, 2022

Symmetric orbifolds

- If M is a CFT: (1) Sym ${ }^{N} M$ is also a CFT (modular inv.)

$$
\begin{aligned}
& \text { holographically } \\
& \text { desirable }
\end{aligned}\left\{\begin{array}{l}
\text { (2) } c=N c_{\mu}, N \rightarrow \infty \Rightarrow \text { lasge-c limit } \\
\text { (3) low energy spectrum doesint grow with } N \\
\text { (4) correlators factorize at large- } N
\end{array}\right.
$$

undesirable $-(s)$ infinite \# of higher spin currents
(1) Untwisted sector: symmetrized product of states in μ^{N}

$$
\Phi=\operatorname{Sym}_{\dot{d}}\left(\otimes_{i=1}^{N} \phi^{(i)}\right)=\operatorname{Sym}\left(\phi^{(1)} \otimes \phi^{(2)} \otimes \ldots \phi^{(N)}\right)
$$

large reduction on the \# of states

- Single-particle states:

$$
\Phi=\phi^{(1)} \otimes H \otimes \ldots \otimes 11+\mathcal{H} \otimes \phi^{(2)} \otimes H \otimes \ldots \otimes H+\ldots, \quad h \Phi=h^{(1)}
$$

egg. The stress tensor

$$
\begin{gathered}
T=T^{(i)} \otimes 11 \otimes \ldots 011+\ldots \equiv \sum_{i=1}^{N} T^{(i)} \\
T(z) T(0)=\sum_{i=1}^{N} T^{(i)}(z) T^{(i)}(0)=\frac{N c_{\mu} / 2}{z^{4}}+\frac{2 T(0)}{z^{2}}+\frac{\partial T(0)}{z}
\end{gathered}
$$

- Multi-particle states:

$$
\Phi=\phi^{(1)} \otimes \phi^{(2)} \otimes 2 \otimes \ldots \otimes H+\phi^{(1)} \otimes H \otimes \phi^{(3)} \otimes \ldots \otimes 1+\ldots, \quad h \Phi=\sum h^{(i)}
$$

e.g. for the stress tensor

$$
T^{(1)} \otimes T^{(2)} \otimes 21 \otimes \ldots \otimes み+\ldots \equiv \sum_{i \neq j}^{N} T^{(i)} T^{(j)}
$$

Exercise: show that $w_{4}=\sum_{i=1}^{N}\left[\left(T^{(i)} T^{(i)}\right)-\frac{3}{10} \partial^{2} T^{(i)}\right]-\alpha \sum_{i \neq j}^{N} T^{(i)} T^{(i)}$ is a spin-4 current, where $(A B)(z)=\oint \frac{d w}{2 \pi i} A(w) B(z), \alpha=\frac{\frac{22}{s c_{\mu}+1}}{N-1}$
(2) Twisted states: states needed for modular invariance $\phi(n)$: "connects" n copies of μ^{N} twist $\theta^{(j)}\left(e^{2 \pi i} z\right)=\vartheta^{g(j)}, \quad g \in S_{N}$

- single-particle spectrum

$$
\begin{aligned}
& h(n)=\frac{h}{n}+\frac{c \mu}{24}\left(n-\frac{1}{n}\right), \quad \text { for each } h \in M \\
& h(n)-\bar{h}(n) \in n \mathbb{Z} \\
& E_{L}^{(n)}=h(n)-\frac{n C_{M}}{24}=\frac{E_{L}}{n}, \quad \text { for each } E_{L} \in M
\end{aligned}
$$

- multi-pasticle spectrum

$$
\epsilon_{l}^{(1)}=\frac{\epsilon_{L}}{2}
$$

$\phi(2) \otimes \phi^{(3)} \otimes \phi^{(4)}$

Single-trace TT

- A Sym ${ }^{N} M$ allows to define the single trace $T \bar{T}$ deformation:

$$
\begin{aligned}
\frac{\partial S}{\partial \mu}=-4 \int(T \bar{T})_{S T}, \quad(T \bar{T})_{S T} & =\sum_{i=1}^{N}\left(T_{++}^{(i)} T_{-}^{(i)}-T_{+-}^{(i)^{2}}\right) \\
H & \\
T \bar{T} & =\sum_{i, j}^{N}\left(T_{1+}^{(i)} T_{--}^{(j)}-T_{++}^{(i)} T_{--}^{(j)}\right)
\end{aligned}
$$

- $(T \bar{T})_{S T}$ takes $S_{y m}{ }^{N} \mu \rightarrow S_{y m}{ }^{N} \mu_{\mu}$

- Sym ${ }^{N} M_{\mu}$ has the same symmetries as M_{μ} (modular invariance)

$$
\Rightarrow z_{N}(\gamma \varepsilon, \gamma \bar{e} ; \gamma \hat{\mu})=z_{N}(\tau, \bar{\varepsilon} ; \hat{\mu})
$$

The partition function:

$$
z_{N}(\tau, \bar{\tau} ; \hat{\mu})=\underbrace{z_{N}^{\text {untwisted }}(\tau, \bar{c} ; \hat{\mu})}_{\begin{array}{c}
\text { Universal for } \\
\text { any sym }
\end{array}{ }_{N} \mu}+\underbrace{z_{N}^{\text {twisted }}(c, \bar{\tau} ; \hat{\mu})}_{\begin{array}{l}
\text { depends on } M \text {, determined } \\
\text { from modular invariance }
\end{array}}
$$

(1) Untwisted sector: (set $N=3$ for simplicity)

$$
z_{N}^{\text {untwisted }}(c, \bar{c} ; \hat{\mu})=T_{r_{\text {untwisted }}}\left(q^{\epsilon_{c}(\hat{\mu})} \dot{q}^{E_{n}(\hat{\mu})}\right)=\sum_{i=1}^{3} z^{(i)}(c, \bar{\varepsilon} ; \hat{\mu})
$$

i) $\Phi_{(i)}=\phi_{i}^{(1)} \otimes \phi_{i}^{(2)} \otimes \phi_{i}^{(3)}$, e.9. the vacuom $\epsilon=3 \epsilon_{i} \Rightarrow z^{(3)}(c, \bar{c} ; \hat{\mu})=z(3 c, 3 \bar{c} ; \hat{\mu}) \rightarrow$ partition function of the seed
ii) $\Phi(i, j)=\phi_{i}^{(1)} \otimes \phi_{i}^{(2)} \otimes \phi_{j}^{(3)}, i \neq j$, e.g. stress tensor

$$
\epsilon=2 \epsilon_{i}+\epsilon_{j} \Rightarrow z^{(2)}(c, \bar{\tau} ; \hat{\mu})=\underbrace{z(2 \tau, 2 \bar{\tau} ; \hat{\mu}) z(2, \bar{z} ; \hat{\mu})}_{\partial q^{2 \epsilon_{i}} q_{q}}-z(3 c, 3 \bar{z} ; \hat{\mu})
$$

iii) $\Phi(i, j, k)=\phi_{i}^{(1)} \otimes \phi_{j}^{(2)} \otimes \phi_{k}^{(3)}, \quad i \neq j \neq K_{1} \quad E=E_{i}+E_{j}+E_{k}$

$$
z^{(1)}(c, \bar{c} ; \hat{\mu})=\frac{1}{3!}\left[z(c, \bar{c} ; \hat{\mu})^{3}-3 z^{(2)}(c, \bar{c} ; \hat{\mu})-z^{(3)}(c, \bar{c} ; \hat{\mu})\right]
$$

Altogether, we have:

$$
\hbar_{N}^{\text {untwisted }}=\frac{1}{3!}\left[z(c, \bar{c} ; \hat{\mu})^{3}+3 z(2 c, 2 \bar{c} ; \hat{\mu}) z(c, \bar{c} ; \hat{\mu})+2 z(3 c, 3 \bar{c} ; \hat{\mu})\right]
$$

$$
\begin{aligned}
& \begin{array}{lclll}
\text { Stuocture of } S_{3}: & \text { conjugacy } \\
\text { class }
\end{array} \quad \text { cycle } \quad \begin{array}{c}
\text { partition } \\
\text { function }
\end{array} \\
& \rightarrow b a c, c b a, a \subset b \quad 2 / 2 \cdot 21 \quad\{2,2,0\} \quad H 2 \quad \leftrightarrow \quad z(2 c, 2 \bar{c} ; \hat{\mu}) \\
& \left.\rightarrow b c a, c a b \quad z_{3} \quad 20,0, j\right\} \quad \|_{3} \quad \leftrightarrow \quad Z(3 c, 3 \bar{c} ; \hat{\mu}) \\
& \Rightarrow z_{3}^{\text {untwisted }}=\frac{1}{3!}\left(c y c l e \text { index of } s^{3}\right)
\end{aligned}
$$

For any Sym N we have

$$
\begin{aligned}
& z_{N}^{\text {untwisted }}=\frac{1}{N!} \text { (cycle index of } S^{N} \text {) }
\end{aligned}
$$

Exercise: check this formula for $N=4$
(2) Twisted sector:

Note that $Z_{N}^{\text {untwisted }}$ is not modular invariant since for each $n>1$

$$
\begin{aligned}
& z(n c, n \bar{c} ; \hat{\mu}) \rightarrow z(n \tau, n \bar{c} ; \hat{\mu}) \text { since } \epsilon_{c}(\hat{\mu})-\epsilon_{n}(\hat{\mu})=P(0) \\
& z(n c, n \bar{c} ; \hat{\mu}) \longrightarrow \underset{s}{\longrightarrow} \not \partial\left(-\frac{n}{c},-\frac{n}{\bar{c}} ; \frac{\hat{\mu}}{\mid \tau^{2}}\right)=z\left(\frac{\tau}{n}, \frac{\bar{\tau}}{n} ; \frac{\hat{\mu}}{n^{2}}\right)
\end{aligned}
$$

Make each $z(n c, n \bar{\varepsilon} ; \hat{\mu})$ invariant by adding its modular images.
For n prime

Exercise: show that $\sum_{\alpha=1}^{n-1} z\left(\frac{c+\alpha}{n}, \frac{\bar{\varepsilon}+\alpha}{n} ; \frac{\hat{\mu}}{n}\right)$ is invariant under s transformations when n is a prime.

For general n, the modular invariant combination is

$$
T_{n} \cdot z(c, \bar{c} ; \hat{\mu})=\sum_{\gamma \mid n} \sum_{\alpha=0}^{\gamma-1} Z\left(\frac{n \tau+\alpha \gamma}{\gamma^{2}}, \frac{n \bar{c}+\alpha \gamma}{\gamma^{2}} ; \frac{\hat{\mu}}{\gamma^{2}}\right)
$$

\leftrightarrow generalization of the Hecke operator

$$
T_{n} \cdot z(c, \bar{c} ; \hat{\mu})=z(n \bar{c}, n \bar{z} ; \hat{\mu})+\underbrace{\sum_{\gamma \mid n} \sum_{\alpha=0}^{\gamma-1} z\left(\frac{n c \cdot \alpha \gamma}{\gamma^{2}}, \frac{n \bar{c}+\alpha \gamma}{\gamma^{2}} ; \frac{\hat{\mu}}{\gamma^{2}}\right)}_{\text {twisted sector }}
$$

Partition function of $\operatorname{Sym}^{N} \mu_{\mu}$:

$$
\begin{gathered}
z(n \tau, n \bar{\tau} ; \hat{\mu}) \rightarrow T_{n} \cdot Z(\tau, \bar{\tau} ; \hat{\mu}), \quad T_{1}=\mu \\
Z_{N}(c, \bar{c} ; \hat{\mu})=\frac{1}{N!}\left\{\sum_{1}, \ldots k_{N}\right\} \frac{N!}{\prod_{n=1}^{N} n^{k_{n}} k_{n}!} \prod_{n=1}^{N}\left[T_{n} \cdot Z(c, \bar{c} ; \hat{\mu})\right]^{k_{n}}
\end{gathered}
$$

Generating functional:

$$
Z(c, \bar{c} ; \hat{\mu})=\exp \left(\sum_{n=1}^{\infty} \frac{p^{n}}{n} T_{n} \cdot Z(c, \bar{\tau} ; \hat{\mu})\right)=\sum_{n=1}^{\infty} p^{n} Z_{n}(c, \bar{c} ; \hat{\mu})
$$

Comments:

- Same formulae as CFT with more general definition of T_{n}
- At large $N(\operatorname{large} C)$:

$$
z_{N}(c, \bar{z} ; \hat{\mu}) \approx\left\{\begin{array}{l}
e^{-\beta \epsilon_{0}(\hat{\mu})}, \beta>2 \pi \\
e^{-\beta^{\prime} \epsilon_{0}\left(\hat{\mu}^{\prime}\right)}, \beta<2 \pi
\end{array}\right.
$$

where $E_{0}(\hat{\mu})=\frac{N}{2 \hat{\mu}}\left(\sqrt{1-\frac{c \hat{\mu}}{3 N}}-1\right) \rightarrow$ different from double trace:

$$
\epsilon_{0}(\hat{\mu})=\frac{1}{2 \hat{\mu}}\left(\sqrt{1-\frac{c \hat{\mu}}{3}}-1\right)
$$

In the microcanonical ensemble:

$$
s(\hat{\mu})=2 \pi\left(\sqrt{\frac{c}{6} R E_{C}(\mu)\left[1+\frac{2 \mu}{R N} E_{R}(\mu)\right]}+\sqrt{\frac{c}{6} R E_{R}(\mu)\left[1+\frac{2 \mu}{R N} E_{L}(\mu)\right]}\right)
$$

Lo differs slightly from the double trace case

The spectrum of twisted states

$$
\begin{aligned}
T_{n} \cdot z(c, \bar{c} ; \hat{\mu})= & \sum_{\gamma \mid n} \sum_{\alpha=0}^{\gamma-1} Z\left(\frac{n \tau+\alpha r}{\gamma^{2}}, \frac{n \bar{c}+\alpha \gamma}{\gamma^{2}} ; \frac{\hat{\mu}}{\gamma^{2}}\right) \\
& C_{0} \gamma \neq 1 \Rightarrow \text { twisted sector }
\end{aligned}
$$

In order to get the spectrum write:

$$
\begin{aligned}
& z\left(\frac{n c+\alpha \gamma}{\gamma^{2}}, \frac{n \bar{\tau}+\alpha r}{\gamma^{2}} ; \frac{\hat{\mu}}{\gamma^{2}}\right)=\operatorname{Tr}\left(q^{\left(n \mid \gamma^{2}\right) \epsilon_{L}\left(\hat{\mu} \mid \gamma^{2}\right)} \bar{q}^{\left(n \mid \gamma^{2}\right) \epsilon_{R}\left(\hat{\mu} \mid \gamma^{2}\right)} e^{(2 \pi i \alpha / \gamma) J(0)}\right) \\
& \sum_{\alpha=0}^{\gamma-1} e^{(2 \pi i \alpha(\gamma) J(0)}=\gamma \delta_{J(0) \bmod \gamma \rightarrow \text { this condition is already }} \\
& \text { satisfied by } \operatorname{Sym}^{N} \mu \\
& \Rightarrow T_{n} \cdot z(c, \bar{c} ; \hat{\mu})=\sum_{\epsilon_{c, n}} \rho\left(\epsilon_{c}, \epsilon_{n}\right) q^{n \epsilon_{l}(\hat{\mu})} \bar{q}^{n} \epsilon_{n}(\hat{\mu}) \\
& +\sum_{\substack{\gamma \mid n \\
\gamma \neq\{, n\}}} \sum_{E_{L, R}} \gamma \rho\left(\epsilon_{L}, \epsilon_{R}\right) q^{\left(n \mid \gamma^{2}\right) \epsilon_{L}\left(\hat{\mu} \mid \gamma^{2}\right)} \bar{q}^{\left(n\left(\delta^{2}\right) \epsilon_{R}\left(\hat{\mu} \mid \gamma^{2}\right)\right.} \delta_{J} \ldots \\
& +\sum_{\epsilon_{l, R}} n p\left(\epsilon_{l}, \epsilon_{\Omega}\right) q^{(1 \mid n) \epsilon_{l}\left(\hat{\mu} \mid n^{1}\right)} \bar{q}^{(1 \mid n) \epsilon_{R}\left(\hat{\mu} \mid n^{2}\right)} \delta_{J_{\bmod } n}
\end{aligned}
$$

(1) untwisted multiparticle state

$$
\phi^{(1)} \otimes \phi^{(2)} \otimes \ldots \otimes \phi^{(n)} \quad \Rightarrow \quad \epsilon_{l, R}^{\text {total }}=n \epsilon_{l, R}
$$

(2) twisted multiparticle state (iff $n \neq$ prime) with twist $r<n$

$$
\underbrace{\phi(r) \otimes \phi(r) \otimes \ldots \otimes \phi(r)}_{n \mid \gamma} \Rightarrow \epsilon_{l, R}^{\text {total }}=\frac{n}{r} \epsilon_{l, R}^{(r)}
$$

(3) twisted single particle state

$$
S_{y m}\left(\phi_{(n)} \otimes \mu \otimes \ldots \otimes \mu\right) \quad \Rightarrow \quad E_{l, n}^{(n)}(\hat{\mu})=\frac{1}{n} E_{l, \Omega}\left(\hat{\mu} \mid n^{2}\right)
$$

same formula for CFT up to the rescaling of $\hat{\mu}$

The spectrum of single particle states in single -trace $T \bar{T}-\operatorname{def}$ CFis can be written as ($n=1$ for the untwisted sector)

$$
E_{l, R}^{(n)}(0)=\epsilon_{l, R}^{(n)}(\mu)+\frac{2 \mu}{n} \epsilon_{l}^{(n)}(\mu) \epsilon_{n}^{(n)}(\mu), \quad J^{(n)}(\mu)=J^{(n)}(0) \in U
$$

Comments

- Single-troce spectrum and density of states: additional factors of n and N. Single-tsace spectrum contains sums of $\sqrt{ }$ ' $!$
- Modular invariance is compatible with both the single and double trace spectra.
- The entropy in the single -trace case is the same as Cardy's formula in Sym ${ }^{N} M \Rightarrow$ no change in the \# of dots.

$$
\begin{aligned}
S(\hat{\mu}) & =2 \pi\left(\sqrt{\frac{c}{6} R E_{C}(\mu)\left[1+\frac{2 \mu}{R N} \epsilon_{R}(\mu)\right]}+L \rightarrow R\right) \\
& =2 \pi\left(\sqrt{\frac{c}{6} R \epsilon_{c}^{(N)}(0)}+\sqrt{\frac{c}{6} R \epsilon_{R}^{(N)}(0)}\right) \\
& =S(0) \quad \longrightarrow \text { maximally-twisted state }
\end{aligned}
$$

String theory on AdS_{3}
Let us consider string theory on $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$. We focus on the bosonic AdS_{3} sector with NS. NS flux. The low energy effective description is $\mathbb{I} B$ sura:

$$
\left.I=\frac{2 \pi}{\left(2 \pi l_{s}\right)^{p}} \int d^{10} \times \sqrt{191} e^{-2 \phi}\left\{R-4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\mu v \alpha} H^{u v \alpha}\right\}\right\} \begin{aligned}
& H=\partial B
\end{aligned}
$$

The background features electric and magnetic charges

$$
Q_{e}=\frac{1}{\left(2 \pi l_{s}\right)^{6}} \int_{s^{2} \times 7^{4}} e^{-2 \phi} * H=p, \quad Q_{m}=\frac{1}{\left(2 \pi l_{s}\right)^{2}} \int_{s^{3}} H=k
$$

Lo F crane is electrically charged under B
Lo NSS brane is magnetically charged under B Related to the fact that $A d S_{3} \times S^{3} \times T^{4}$ originates from the near horizon limit of PF1 and K NSS brands $\Rightarrow s$-dual of the D1.DS system.

The space of asymptotically Ads_{3} solutions can be parametrized as

$$
\begin{aligned}
& d s^{2}=l_{\frac{1}{2}}^{l^{2}}\left\{\frac{d r^{2}}{4\left(r^{2}-4 T \mu^{2} T v^{2}\right)}-\underset{d u d v}{ }-T_{u}^{2} d u^{2}+T v^{2} d v^{2}\right\}+d s_{s} 3+d s_{-4} \\
& \text { Ads scale } \\
& u=t+\varphi, v=t-\varphi, \quad \varphi \sim \varphi+2 \pi
\end{aligned}
$$

$$
B=\frac{l^{2}}{2} r d u n d v+B \Omega_{3}
$$

$e^{2 d}=\frac{k}{p}, \quad k \equiv \frac{l^{2}}{l_{s}^{2}}, \quad(\alpha)>1, \quad \rho \gg 1 \longrightarrow$ weak string coupling Lo semiclassical limit

$$
T_{\mu}=T_{\nu}=\frac{i}{2}
$$

String theory on AdS_{3} with NS -NS flux admits a perturbative worldsheet description as an $S L(2, \mathbb{R}) \times s u(2)$ waw model,

$$
\begin{array}{rlrl}
S_{\omega z w}=\frac{1 L}{16 \pi} \int_{\partial \mu} d^{2} z \operatorname{Tr}\left(\partial_{a} g^{-1} \partial^{a} g\right) & +\mathbb{k}, & g \in S L(2, \mathbb{R}) \\
b & & & \int_{\mu}^{d^{3} \times \epsilon^{a b c}} \operatorname{Tr}\left(g^{-1} \partial_{a} g \partial_{b} g^{-1} \partial_{<} g\right)
\end{array}
$$

or as a NLSM. The AdS_{3} part of the action is:
$\epsilon^{z \bar{z}}=-1 \quad$ target space coords: (ρ, u, v)

$$
S=-\frac{1}{2 l_{s}^{2}} \int d_{d}^{d^{2} z}(\sqrt{-n} \underbrace{\left.\eta^{a b} G_{\mu v}+\epsilon^{a b} B_{\mu v}\right) \partial_{a} X^{\mu}(z, \bar{z}) \partial_{b} X^{v}(z, \bar{z})}
$$

worldsheet coords worldsheet metric

$$
\begin{aligned}
& \quad(z, \bar{z})=(\tau+\sigma, \tau-\sigma) \\
& =\frac{1}{l_{s}^{2}} \int \partial^{2} z \Pi_{\mu \nu} \partial x^{\mu} \bar{\partial} x^{\nu},
\end{aligned}
$$

$$
d s^{2}=-d z d \bar{z}
$$

$$
M_{\mu \nu}=G_{\mu \nu}+B_{\mu \nu}
$$

For global AdS_{3} :

$$
s=k \int \partial^{2} z\left(\frac{\partial r \bar{\partial} r}{4 r^{2}-1}-\frac{1}{4} \partial u \bar{\partial} u-\frac{1}{4} \partial v \bar{\partial} v-r \bar{\partial} u \partial v\right)
$$

Exercise: Parametrize the group elements of $S L(2, \mathbb{R})$ by $T^{3}=-\frac{i}{2} \sigma^{2}$,

$$
T^{ \pm}=\frac{1}{2}\left(\sigma^{3} \pm i \sigma^{\prime}\right) \text {. Use } g=e^{u T^{3}} e^{\frac{1}{2} \log \left(2 r+\sqrt{4 r^{2}-1}\right)\left(T^{+}+T^{-}\right)} e^{v T^{3}} \text { to show }
$$

the EOM of the NLSM match those of the waw model $\left(T_{u}=T_{v}=\frac{i}{2}\right)$.
The worldsheet action is invariant under

$$
\hat{S L}(2,112)_{L} \times \hat{S L}(2,12)_{R}
$$

L) obtained in the wzw formulation by $\delta g=w(z) g+g \bar{\omega}(\bar{z})$

Ls or from the isometries of $A d S_{3}$ with wordsheet dependent parameters (eeg. $\delta u(z, \bar{z})=\alpha(z)$)

These symmetries are generated by the chiral waw currents

$$
J^{a}(z)=-k \operatorname{Tr}\left(T^{a} \partial g g^{-1}\right), \quad \bar{J}^{a}(\bar{z})=k \operatorname{Tr}\left(T^{a} g^{-1} \bar{\partial} g\right)
$$

which are related to the Noether currents of NLSM by

$$
j_{\text {Norther }}(z, \bar{z})=J^{a}(z)+\theta(z, \bar{z}) \longrightarrow \text { "topological" term, }
$$

Example: for translations along $x^{\mu}\left(\delta x^{\mu}=\xi^{\mu}\right)$ we have

$$
\begin{gathered}
j_{\xi}=l_{s}^{2} \xi^{v}\left(M_{v \mu} \bar{\partial} x^{\mu} \partial+M_{\mu v} \partial x^{M} \bar{\partial}\right) \\
\xi=\partial_{\mu} \Rightarrow j_{\partial u}=\underbrace{\frac{k}{2}(\partial u-2 r \partial v)}_{J^{3}} \bar{\partial}+\frac{k}{4}(\bar{\partial} u \partial-\partial u \bar{\partial})
\end{gathered}
$$

For the $M=0$ BTz black hole all Noether currents are chiral, ie.

$$
j_{\text {Not her }}=J^{a} \bar{j} \quad \text { or } \quad j_{\text {Mother }}=\bar{J}^{a} \partial
$$

From the chiral part of $j_{\text {Nether }}$ or the waw current we obtain:

$$
\begin{array}{ll}
J_{n}^{a}=\frac{1}{2 \pi} \oint e^{i n z} J^{a} \Rightarrow & {\left[J_{n}^{3}, J_{m}^{3}\right]=-\frac{k}{2} n \delta_{n+m}} \\
\frac{b}{\text { particularly interested in } J_{0}^{3}} & {\left[J_{n}^{3}, J_{m}^{ \pm}\right]= \pm J_{n+m}^{ \pm}} \\
& {\left[J_{n}^{+}, J_{m}^{-}\right]=-2 J_{n+m}^{3}+k n \delta_{n+m}}
\end{array}
$$

Energy and angular momentum of the string $\left(\epsilon=\epsilon_{c}+\epsilon_{R}, P=\epsilon_{c}-\epsilon_{R}\right)$

$$
\epsilon_{L}=\frac{1}{2 \pi} \oint j_{\partial_{u}}=\underbrace{\frac{1}{2 \pi} \oint J^{3}}_{J_{0}^{3}}+\frac{k}{8 \pi} \underbrace{\oint \partial_{\sigma} u}_{\text {winding }}, \quad \epsilon_{R}=\frac{1}{2 \pi} \oint j_{\partial v}
$$

The worldsheet stress energy tensor (at large K):

$$
T_{a b}=\frac{2}{\sqrt{-\eta}} \frac{\delta s}{\delta n^{a b}} \Rightarrow T=-l_{s}^{-2} G_{\mu \nu} \partial x^{\mu} \partial x^{\nu}
$$

Exercise: compute the waw currents and verify that the stress tensor matches the Sugawara stress tensor at large k

$$
T=\frac{1}{k-2} J^{a} J^{a}=\frac{1}{k-2}\left[\frac{1}{2}\left(J^{+} J^{-}+J^{-} J^{+}\right)-\left(J^{3}\right)^{2}\right]
$$

Visasoro algebra:

$$
\tilde{c}=\frac{3 k}{k+2}
$$

$$
l_{n}=-\frac{1}{2 \pi} \oint T e^{i n z}, \quad\left[l_{n}, l_{m}\right]=(n-m) l_{n+m}+\frac{\tilde{c}}{12} n\left(n^{2}-1\right) \delta_{n+m},
$$

The spectrum
Spectrum of strings on $\mathrm{AdS}_{3} \rightarrow$ unitary reps of $\operatorname{SL}(2, \mathbb{R}) \times S L(2, \mathbb{Z})$

$$
\begin{gathered}
|j, m\rangle \quad c_{2}|j, m\rangle=-j(j-1)|j, m\rangle, \quad J_{0}^{3}|j, m\rangle=m|j, m\rangle \\
c_{2} \equiv \sum_{a} J_{0}^{a} J_{0}^{a}, \quad J_{0}^{a} \equiv \frac{1}{2 \pi} \oint J^{a},
\end{gathered}
$$

(1) Principal discrete reps (short strings)

$$
D_{j}^{ \pm}=\{|j, m\rangle: m= \pm j, \pm(j+1), \pm(j+2), \ldots\}, \quad J_{0}^{\mp} \quad|j, \pm j\rangle=0
$$

unitarity: $j \in \mathbb{R}, 0$
wavefunction is $h^{2} \int^{\frac{1}{2}}<j<\frac{k}{2} \rightarrow$ no ghost theorem
(2) Principal continous reps (long strings)

$$
\left.c_{j}^{\lambda}=\{1 j, m\rangle: m=\lambda, \lambda \pm 1, \lambda \pm 2, \ldots\right\}, \quad \lambda \in[0,1)
$$

unitarity: $j=\frac{1}{2}+i s, s \in \mathbb{Z}$

Visasoro constraints:

$$
\left.\left(l_{0}-1\right) \mid \psi\right)=0 \Rightarrow \underbrace{\substack{\text { internal } \\
\text { manifold }}}_{\frac{c_{2}}{k-2} \text { level } \quad \begin{array}{l}
-\frac{j(j-1)}{k-2}
\end{array}+h=1}
$$

L_{D} for $D_{j}^{ \pm}$: N is bounded from above (finite string excitations)
to for C_{j}^{λ} : only solution has $N=h=0$ (the tachyon)

This can be remedied by the inclusion of additional "flowed" representations.

Spectral flow
Let's consider the EOM of the NLSM with general $T_{N} T_{V}$:

$$
\begin{gathered}
\delta s=-\frac{1}{l_{s}^{2}} \int \partial^{2} z\left\{(f(r)+\bar{\partial} u \partial v) \delta r-\left[\frac{1}{2} \partial \bar{\partial} u+\bar{\partial}(r \partial v)\right] \delta u\right. \\
\left.-\left[\frac{1}{2} \partial \bar{\partial} v+\partial(r \bar{\partial} u)\right] \delta v\right\}
\end{gathered}
$$

The eon are invariant under the spectral flow transformation:

$$
u \rightarrow u-w z, \quad v \rightarrow v-w \bar{z}
$$

In general (non AdS_{3}) space times this is related to the existence of chiral currents.

Exercise: assume $M_{\mu v}$ is invariant under translations along X^{m}. Find the conditions on $M_{\mu v}$ such that $x^{m} \rightarrow x^{m}+\omega z$ leaves the EOn invariant.

We can use spectral flow to generate winding string solutions:

$$
\begin{array}{cc}
u(\tau), v(c), r(\tau) \\
\text { d } \\
\text { Eon } \Rightarrow \text { geodesic eq. }
\end{array} \quad \begin{gathered}
\text { SF } \\
\\
\end{gathered} \quad \begin{gathered}
\tilde{u}(\tau, \sigma), \tilde{v}(\tau, \sigma) \\
\\
\\
\end{gathered}
$$

short strings:

long strings:

The spectral flow transformation induces a transformation of the currents that leaves the algebra unchanged, ie. it's an automorphism easy to check using the of the $s(12,12)$ algebra: results of a previous exercise.

$$
J^{3} \rightarrow \tilde{J}^{3}=J^{3}-\frac{12}{2} \omega, \quad J^{ \pm} \rightarrow \tilde{J}^{ \pm}=e^{\mp i z \omega} J \pm, \quad \omega \subset Z
$$

When the group is non compact, spectral flow generates new reps. Hence, for $S L(2, \mathbb{R})$ we have: theorem

$$
D_{j}^{ \pm, w}, \quad C_{\frac{1}{2}+i s}^{\lambda, w} \quad w h e r e \quad \frac{1}{2}<j<\frac{k-1}{2}
$$

Flowed stress tensor:

$$
\begin{gathered}
T=\frac{1}{k}\left[\frac{1}{2}\left(J^{+} J^{-}+J^{-} J^{+}\right)-\left(J^{3}\right)^{2}\right] \Rightarrow \tilde{T}=T+\omega J^{3}-\frac{k \omega^{2}}{4} \\
\Rightarrow \tilde{l}_{0}=\frac{1}{2 \pi} \oint \tilde{T}=l_{0}+\omega J_{0}^{3}-\frac{k \omega^{2}}{4}
\end{gathered}
$$

The virasoro constraints of a flowed state $|j, m\rangle \longrightarrow|\tilde{j}, \tilde{w}\rangle$ become

$$
\left(L_{0}-1\right)|\tilde{\psi}\rangle=0 \Rightarrow-\frac{\tilde{j}(\bar{j}-1)}{k}-\omega \tilde{j}_{0}^{3}-\frac{k \omega^{2}}{4}+N+h=1
$$

- arbitrarily large
- w-flowed continuous reps.

Recall the left moving energy of the string is given by

$$
\epsilon_{c}^{(\omega)}=\frac{1}{2 \pi} \oint j_{\partial u}=\tilde{J}_{0}^{3}+\frac{k}{4} \omega
$$

The Visasoro constraints become

$$
\begin{aligned}
-\frac{\tilde{j}(\tilde{j}-1)}{k}-\omega \epsilon_{L}^{(\omega)}=1 \quad & \Rightarrow \quad \epsilon_{L}^{(1)}=-\frac{\tilde{j}(\tilde{j}-1)}{k}-1 \\
& \Rightarrow \quad \epsilon_{l}^{(\omega)}=\frac{1}{\omega} \epsilon_{l}^{(1)}
\end{aligned}
$$

energy of a twist-w state in a symmetric orbifold!

Comments:

- For $D_{j}^{ \pm}, \epsilon_{L}^{(1)}=-\frac{\tilde{j}(\tilde{j}-1)}{k}-1$ can not be generically solved since

$$
\tilde{J}_{0}^{3}|\tilde{j}, \tilde{m}\rangle=\tilde{m}|\tilde{j}, \tilde{m}\rangle, \quad \tilde{m} \in U
$$

- For C_{j}^{λ}, we have $\tilde{m}=\lambda \pm n$ with $\lambda \in \mathbb{R}, n \in U$. Hence, it's possible to solve the Virasoro constraints!
\Rightarrow spectrum of long strings captured by a symmetric orbifold where $\omega=$ twist of the state $(\omega=1 \rightarrow$ untwisted sector $)$

However, the holographic dual is not a symmetric orbifold
in tension with the semiclassical limit $(k \gg 1)$
of sugra: no tower of higher spins fields

At $k=1$ we don't have a semiclassical approximation but:
(1) there's an oo tower of massless higher spin states
(2) there are no discrete reps
(3) only the $s=0 C_{j}^{\lambda}$ reps are present discrete spectrum
\Rightarrow At $k=1$ the holographic dual is Sym ${ }^{p} T^{4}$ with $c=6 p$
For general k we expect to move along the conformal manifold

$$
S_{y m}{ }^{P} T^{4}
$$

twist field (with $n=2$) that partially
CFT with $c=6 \mathrm{kP}$ destroys the symmetric product structure

Lo long string spectrum still captured by a symmetric orbifold
so allows for the definition of single-trace deformations

