Single-trace $T \bar{T}$ deformations and string theory

Lecture III

Luis Apolo

University of Amsterdam
\& Bimsa
$3^{\text {rd }}$ Young Frontiers Meeting September 12.14, 2022

The $T \bar{T}$ deformation in string theory
We come back to the question:

At $k=1 \rightarrow$ single or double trace deformation
For any in \rightarrow single trace deformation of the long string sector is more natural in string theory

Let us consider the $M=0$ BTZ black hole

$$
\begin{aligned}
& d s_{A d S_{3}}^{2}=l^{2}\left(d \rho^{2}-e^{2 \rho} d u d v\right), \quad 2 r=e^{2 \rho} \\
& B_{A d S_{3}}=\frac{e^{2}}{2} e^{2 \rho} d u n d v
\end{aligned}
$$

The Noether currents are chiral and generate an $s(12, \mathbb{R})$ algebra

$$
\begin{array}{ll}
\xi^{-}=\partial u & j^{-}=j_{\partial \mu}=k e^{2 \rho} \partial v \bar{\partial}, \\
\xi^{3}=u \partial u-\frac{1}{2} \partial_{\rho} & \Rightarrow \\
\xi^{+}=u^{2} \partial u-e^{-2 \rho} \partial v-u \partial \rho & j^{+}=\ldots
\end{array}
$$

Exercise: find the j^{3} and j^{+}Noether currents and confirm j^{-}, j^{3}, and j^{+}are chirally conserved.

The $T \bar{T}$ operator from the worldsheet
Using the world sheet currents we can construct a vertex operator that corresponds to the stress tensor in the dual CFT!

The ingredients we need are:
(1) the representation of the $S(2, \mathbb{1})$ algebra in the dual CFT

$$
\begin{gathered}
J_{0}^{-}=-\partial x, \quad J_{0}^{3}=-(x \partial x+h), \quad J_{0}^{+}=-\left(x^{2} \partial x+2 h x\right) \\
\text { auxiliary dual } \\
\text { CFT coordinates } \\
\text { conformal weight } \\
\text { in the dual CFT }
\end{gathered}
$$

(2) the primary fields

$$
\Phi_{n}=\frac{1}{\pi}\left(\frac{1}{(u-x)(v-\bar{x}) e^{p}-e^{-\rho}}\right)^{2 h}
$$

representation of both $S L(2, \mathbb{R})$ algebras, ie.

$$
\left[J_{0}^{a}, \Phi_{n}\right]=l_{\xi^{a}} \Phi_{n}
$$

Lo check: $c_{2} \Phi_{n}=\frac{1}{4} \square \Phi_{n} \Rightarrow m^{2}=-4 c_{2}=4 h(h-1)$
Ls dual CFT weight: (h, h), worldsheet: $(\Delta, \Delta), \Delta=\frac{-h(h-1)}{k-2}$
(3) The "soldering" current:

$$
L_{>} T \sim C_{2}+\ldots
$$

$$
\begin{gathered}
J(x ; z) \equiv 2 x j^{3}(z)-j^{+}(z)-x^{2} j^{-}(z), \quad \partial_{x}^{3} J(x ; z)=0 \\
\frac{1}{2} \partial_{x}^{2} J(x ; z)=u^{+} j^{-}(z) u, \quad u=e^{x J_{0}^{-}}, \quad \frac{1}{2} \partial_{x} J=u^{+} j^{3} u, \quad-J=u^{+} j^{+} u
\end{gathered}
$$

Lo dual CFT weight: $(-1,0)$, worldsheet: $(1,0)$

Using the scaling dimensions of $\Phi n, J$, and \bar{J} we can construct a vertex operator of weight $(2,0)$ in the dual CFT:
worldsheet: $(0,0),(1,0),(0,0),(0,1)$

$$
\begin{array}{r}
T(x)=\frac{1}{2 k} \int \partial^{2} z\left(a_{1} J \partial_{x}^{2} \Phi_{1}+a_{2} \partial x J \partial x \Phi_{1}+a_{3} \partial \partial_{x}^{2} J \Phi_{1}\right) \bar{J} \\
\text { dual CFT: }(2,0),(-1,0),(1,1),(0,-1)
\end{array}
$$

The a_{i} can be fixed by imposing the physical state conditions or requiring T transforms as a tensor, such that

$$
T(x)=\frac{1}{2 K} \int d^{2} z\left(\partial_{x} J \partial_{x} \Phi_{1}+2 \partial_{x}^{2} J \Phi_{1}\right) \bar{J}
$$

$T(x)$ satisfies all of the desired properties for the stress tensor of the dual CFT, e.g. the $T(x) T(y)$ ope.

Strategy to evaluate the $O P E$:

$$
\partial_{\bar{x}}\left(\Phi_{1} \bar{J}\right)=k \partial_{\bar{z}} \Phi_{1} \quad \Rightarrow \quad \partial_{\bar{x}} T(x)=\frac{1}{2} \oint \partial z\left(\partial_{x} J \partial_{x} \Phi_{1}+2 \partial_{x}^{2} J \Phi_{1}\right)
$$

Io vanishes within correlators up to contact terms single and double poles

$$
J_{x ; z} J_{y: w}=k \frac{(y-x)^{2}}{(z-w)^{2}}+\frac{1}{z-w}\left[(y-x)^{2} \partial_{y}\right.
$$

$$
[2(y-x)] J_{y ; x}
$$

$$
\partial \bar{x} T(x) T(y)=\frac{1}{4 k} \int \partial^{2} w \oint \partial z\{\partial x \underbrace{\bar{J}(x ; z) \partial x \Phi_{1}(x ; z) \partial_{y} J(y ; w) \partial_{y} \Phi_{1}(y ; t) \bar{J}(\bar{y} ; \bar{z})+\ldots}_{\text {single pole }}
$$

Lo $\lim _{z \rightarrow \omega} \Phi_{1}(x ; z) \Phi_{1}(y ; \omega)=\underbrace{\delta^{(z)}(x-y)} \Phi_{1}(y ; \omega)$

$$
\delta^{(2)}(x-y)=\frac{1}{\pi} \quad \partial_{\bar{x}} \frac{1}{x-y}
$$

Altogether we find

$$
T(x) T(y)=\frac{3 k p}{(x-y)^{4}}+\frac{2 T(y)}{(x-y)^{2}}+\frac{\partial T(y)}{x-y}, \quad C=6 k p \quad v
$$

$\partial^{3} x J(x ; z)=0 \Rightarrow$ no other chiral vertex operators with weight $h>2$ other than $\partial_{x}^{h-2} T(x)$.

Theres another vertex operator we can construct with dimension $(2,2)$ in the dual CFT:

$$
D(x, \bar{x})=\int \partial^{2} z(\underbrace{\left(\partial_{x} J \partial x+2 \partial_{x}^{2} J\right)}_{(1,0)}(\underbrace{\left.\partial_{\bar{x}} \bar{J} \partial \bar{x}+2 \partial_{\bar{x}}^{2} \bar{J}\right)}_{(0,1)} \underbrace{\Phi_{1}}_{(1,1)}
$$

Using similar techniques we find

$$
T(x) D(y, \bar{y})=\frac{3 k \bar{T}(\bar{y})}{(x-y)^{4}}+\frac{2 D(y, \bar{y})}{(x-y)^{2}}+\frac{\partial y D(y, \bar{y})}{x-y}, \quad c_{\mu}=6 k
$$

Let us consider the opes of T with the double and single trace versions of $T \bar{T}$ in a $S_{y m}^{P} M$ with $C_{\mu}=6 K$:
(1)

$$
\begin{aligned}
& T \bar{T} \equiv \sum_{i, j=1}^{P} 7^{(i)} \bar{\eta}^{(j)}:
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 K P \bar{T}(y)}{(x-y)^{4}}+\frac{2 T \bar{T}(y)}{(x-y)^{2}}+\frac{\partial T \bar{T}(y)}{x-y}
\end{aligned}
$$

(2) $(T \bar{T})_{S T}=\sum_{i=1}^{p} T^{(i)} \bar{T}^{(i)}$:

$$
\begin{aligned}
T(x) T \bar{T}(y)=\sum_{i, j} T^{(i)} T^{(j)} \bar{T}(j) & =\sum_{j} \frac{3 k \bar{T}(j)}{(x-y)^{4}}+2 \frac{T^{(i)} \bar{T}(j)}{(x-y)^{2}}+\frac{\partial T^{-(j)} \bar{T}^{(j)}}{x-y} \\
& =\frac{3 k \bar{T}(y)}{(x-y)^{4}}+\frac{2(\bar{T})_{s T}}{(x-y)^{2}}+\frac{\partial(\bar{T} \bar{T})_{s T}}{x-y}
\end{aligned}
$$

$\Rightarrow D(y, \bar{y})$ is the vertex operator for single trace $T \bar{T}$!
There are no other local vertex operators with weight $(2,2)$. In particular $T(x) \bar{T}(\bar{x})=\int \partial^{2} z\left(\int \partial^{2} w \cdots\right)$ is non local

Marginal worldsheet deformations
Consider deforming the worldsheet action by

$$
\begin{aligned}
& \int \partial^{2} x(T \bar{T})_{S T}\sim \int \partial^{2} x D(x, \bar{x})=\int \partial^{2} z \underbrace{\int \partial^{2} x \Phi_{1}}_{\text {constant }} \begin{array}{c}
\partial_{x}^{2} x \\
j(x) \\
j_{\partial \mu}(z) \\
\partial^{2} \bar{x} \bar{J}(\bar{x}) \\
d
\end{array}] \\
& \Rightarrow \int j_{\partial V}(\bar{z})
\end{aligned}
$$

Comments:

- Translations along $u(=x$ at $\rho \rightarrow \infty)$ are generated by $\left.\begin{array}{l}j^{-}(z) \text { on the wordsheet } \\ T(x) \text { on the dual CFT }\end{array}\right\} \begin{gathered}\text { precise sense in which } \\ j_{\partial u} j_{\partial v} \sim T \bar{T}\end{gathered}$
- The deformation is exactly marginal (on the world sheet) L_{0} preserves shift symmetry (translations) along u, v Lo preserves conformal symmetry of the world sheet

Lo generates another solution of SUGRA

- $D(x, \bar{x})$ is not Known away from the CFT fixed point but we can work directly with the Noether currents j^{-}and j^{-}.
- These currents are not chiral for other Ads_{3} backgrounds (L) most generalize the $\int \partial^{2} z j^{-}(z) \bar{j}^{-}(\bar{z})$ deformation

Let us rewrite the $\bar{\top}$ deformation in terms of the "currents" generating translations:

$$
\begin{gathered}
j_{(x)}^{a f T}=T_{\mu x} d_{x}^{\mu}, \quad j_{(\bar{x})}^{a F T}=T_{\mu \bar{x}} d x^{\mu} \\
d * j_{(x)}^{\text {aFT }} \alpha \underbrace{(\underbrace{\partial_{x x}+T_{x}}_{\bar{x}} T_{\bar{x} x}}_{0}) d x \wedge d_{\bar{x}}, \quad d x j_{(\bar{x})}^{\text {afT }}=0 \\
\partial_{\mu} S=-4 \int d^{d^{2} \times\left(T_{x x} T_{\bar{x} \bar{x}}-T_{x \bar{x}}^{2}\right)=-4 \underbrace{\int j_{(x)} \wedge j_{(\bar{x})}}}
\end{gathered}
$$

can be generalized to other deft, e.g $J \bar{T}, \tilde{J}_{(x)}=J_{\mu} d x^{\mu}$

The worldsheet deformation is proposed to be

$$
\begin{aligned}
& \partial_{\hat{\mu}} S_{\omega S}=-4 \int j_{\partial \mu} n j_{\partial v} \\
& l j_{(x)}=j_{\partial \mu}, \quad \mu=l^{2} \hat{\mu}
\end{aligned}
$$

The deformation is exactly marginal and can be written as a current-current deformation after a change of coordinates.

Using the definition of $S_{w s}$ and j_{ξ}

$$
\begin{aligned}
& S_{w S}=l_{s}^{-2} \int \partial^{\top} z \partial x^{\top} M \bar{\partial} x, \\
& j_{\xi}=-l_{s}^{-2}\left(\xi^{\top} M \bar{\partial} x d \bar{z}+\partial x^{\top} M \xi \partial z\right)
\end{aligned}
$$

we obtain

$$
\Gamma^{(u, v)}=2 \delta_{\alpha}^{[u} \delta_{\beta}^{v]}
$$

$$
\begin{array}{r}
\partial \hat{\mu} S_{\omega S}=-4 \int j_{\partial \mu n} j_{\partial v} \Rightarrow \partial_{\hat{\mu}} M=-l_{s}^{-2} M \Gamma^{(u, v)} M \\
\left.\Rightarrow M(\hat{\mu})=\begin{array}{c}
M(0)\left[I+2 \hat{\mu} l_{s}^{-2} \Gamma^{(u, v)} M(0)\right]^{-1} \\
\text { original AdS }
\end{array}\right\} \text { background }
\end{array}
$$

Ts T transformations
What does this correspond to in string theory? Answer:
a TST transformation
T-duality on u o \backslash-duality on u

$$
\text { shift } v \rightarrow v-\hat{\mu} u
$$

- The Ts transformation is exactly marginal (to one-loop) if

$$
\begin{gathered}
\phi \rightarrow \tilde{\phi}: \quad \sqrt{\tilde{a}} e^{-2 \tilde{\phi}}=\sqrt{a} e^{2 \phi} e^{2 \phi_{0}} \quad \text { (Buscher's rule) } \\
\text { constant }
\end{gathered}
$$

$\Rightarrow T_{s} T$ is a solution-generating technique of SUGRA

- $M(\hat{\mu})$ satisfies different boundary conditions than $M(0) \Rightarrow T_{s} T$ changes the uv behavior of the dual theory (as expected for $T \bar{T}$)
- Ts works for any background with at least two translational isometries. For $A d S_{3} \times S^{3} \times T^{4}$ we have the following interpretation:

AdS_{3}	$\mathrm{~S}^{3}$	$\mathrm{~T}^{4}$	deformation
$\mathrm{u} v \mathrm{r}$	Ψ_{i}	y_{i}	
$\mathrm{x} \times$			$\hat{\mu}_{0} \sum_{i} T^{i} \bar{T}^{i}$
x			$\hat{\mu}_{-} \sum_{i} T^{i} \bar{J}^{i}$
x			$\hat{\mu}_{+} \sum_{i} J^{i} \bar{T}^{i}$

Summary
Holographic dual

Worldsheet CFT

SUGRA approximation

SsT black holes
Let us consider the $T_{s} T$ transformation for $T \bar{T}$ (along u and v)

$$
\text { BIZ } \times s^{3} \times T^{4} \quad \longrightarrow \quad \text { Ts BH } \times s^{3} \times T^{4}
$$

where the $T_{s} T$ black hole is described by

$$
\begin{aligned}
d s_{3}^{2} & =\frac{d r^{2}}{4\left(r^{2}-4 T_{\mu}{ }^{2} T_{u}{ }^{2}\right)}-\frac{r d u d v-T_{\mu}{ }^{2} d u^{2}-T_{v}{ }^{2} d_{v}{ }^{2}}{1+\lambda r+\lambda^{2} T_{\mu}{ }^{2} T_{v}{ }^{2}}, \quad \lambda=2 k \hat{\mu} \\
B_{3} & =\frac{r+2 \lambda T_{\mu}{ }^{2} T_{u}{ }^{2}}{2\left(1+\lambda r+\lambda^{2} T_{u}{ }^{2} T_{u}{ }^{2}\right)} d u n d v \\
e^{2 \phi} & =\frac{1 k}{\rho} \frac{1}{1+\lambda r+\lambda^{2} T_{\mu}{ }^{2} T_{u}{ }^{2}} \times \underbrace{\left(1-\lambda^{2} T_{u}{ }^{2} T_{v}{ }^{2}\right)}_{e^{2 \phi_{0}}}
\end{aligned}
$$

The constant ϕ_{0} is fixed by requiring

$$
\left.\begin{array}{l}
Q_{e}=\frac{1}{\left(2 \pi l_{s}\right)^{6}} \int_{S^{3} \times T^{4}} e^{-2 \phi} * H=p \\
Q_{m}=\frac{1}{\left(2 \pi l_{s}\right)^{2}} \int_{S^{3}} H=K
\end{array}\right\}
$$

same (quantized) values as before the deformation

Features:

- Asymptotic behavior as $r \rightarrow \infty$:

$$
\begin{aligned}
& d s_{3}^{2} \sim \frac{d r^{2}}{4 r^{2}}-\frac{1}{\lambda} d u d v, \quad B \sim \frac{1}{2>} d u \wedge d v, \quad \phi \rightarrow-\infty \\
& R(\xi) \alpha-\frac{1}{r^{2}} \rightarrow 0 \quad R_{(E)} \\
& \vdots \\
& \text { Riccio scalar in the } \\
& \text { Einstein frame } \\
& I R:-\frac{6}{l^{2}}
\end{aligned}
$$

Pathologies when $\lambda_{0}<0$: CTCs and a curvature singularity

$$
r_{c}=r_{n}^{*}=\frac{1+\lambda^{2} T_{u}^{2} T_{v}^{2}}{\lambda}
$$

Cutoff in double trace $T \bar{T}$:
cutoff $\alpha \frac{1}{\lambda}$

- Ground state \rightarrow analytic continuation of $\Gamma_{\mu, v}$ everywhere smooth geometry ground state is real $T_{\mu}=T_{v}=\frac{i}{\lambda}(1-\sqrt{1-\lambda}) \quad$ iff $\lambda \leq 1$.

Exercise: let $T_{\mu}^{2}=T_{v}^{2}=-r_{0}$. Find the equation satisfied by r_{0} that guarantees the absence of conical singularities at $r=2 r_{0}$. Find the solutions to this equation and justify the choice above.

A healthy space of solutions requires:

$$
0 \leq \lambda \leq 1
$$

compatible with the spectrum of $T \bar{T}$-deformed CFTS!

Recall that the spectrum of M_{μ} in a Sym $^{P} \mu_{\mu}$ is given by

$$
E(\hat{\mu})=-\frac{1}{2 \hat{\mu}}\left(1-\sqrt{1+4 \hat{\mu} \in(0)+4 \hat{\mu}^{2} J(0)^{2}}\right), J(\hat{\mu})=J(0)
$$

- for large $\epsilon(0), \epsilon(\hat{\mu})$ becomes complex if $\hat{\mu}<0$
- for the ground state $\epsilon(0)=-\frac{k}{2}, \epsilon(\hat{\mu}) \in \mathbb{C}$ if $2 k \hat{\mu}>1$

Lᄂ the spectrum is real if $0 \leqslant \hat{\mu} \leqslant \frac{1}{2 \alpha} \Rightarrow 0 \leqslant \lambda \leqslant 1$.
strong hint the $T_{s} T$ solutions are related to single-trace $T \bar{T}$

Note that $\lambda<0$ leads to both CTCs and curvature singularities but only the CTCs are associated with complex energy states. This can be seen by turning on additional irrelevant deformations.

The worldsheet spectrum
In the semiclassical limit $k>s 1$ we can derive the spectrum of the deformed worldsheet theory using spectral flow. Let

$$
\begin{gathered}
x^{\mu} \equiv \text { coordinates after } \\
T_{s} T
\end{gathered} \quad \hat{x}^{\mu} \equiv \begin{gathered}
\text { coordinates before } \\
T_{s} T
\end{gathered}
$$

One can show that

$$
\begin{array}{ll}
\operatorname{Eom}\left(x^{\mu}\right) \rightarrow \operatorname{tom}\left(\hat{x}^{\mu}\right) & \quad \text { using } \\
\operatorname{Vir}\left(x^{\mu}\right) \rightarrow \operatorname{Vir}\left(\hat{x}^{\mu}\right) & \\
\partial \hat{x}=\partial x-2 l_{s}^{-2} \hat{\mu} \partial x \cdot \bar{\partial} x-2 l_{s}^{-2} \hat{\mu} \Gamma \cdot M \cdot \overline{\partial x}
\end{array}
$$

The change of coordinates induces twisted boundary conditions on \hat{x} :

$$
\begin{aligned}
& \hat{u}(\sigma+2 \pi)=\hat{u}(6)-2 \pi \gamma^{(u)}, \quad \hat{v}(\sigma+2 \pi)=\hat{v}(\sigma)-2 \pi \gamma^{(v)} \\
& L_{\rightarrow} \gamma^{(\mu)}=\frac{1}{2 \pi} \oint(\partial-\bar{\gamma}) \hat{x}=\omega+2 \hat{\mu} l_{s}^{-2} \frac{1}{2 \pi} \oint\left(M_{\alpha v} \partial x^{\alpha}+M_{v \alpha} \bar{\partial} x^{\alpha}\right) \\
& \gamma^{(\mu)}=\omega+2 \hat{\mu} \epsilon_{R} \\
& \gamma^{(v)}=\omega-2 \hat{\mu} \epsilon_{L} .
\end{aligned}
$$

These boundary conditions look like a generalization of winding \Perp
we can enforce them by a spectral flow transformation:

$$
u \rightarrow u-\gamma^{(u)} z, \quad v \rightarrow v-\gamma^{(v)} \bar{z}
$$

Using the shift of lo under spectral flow we obtain:

$$
L_{0} \rightarrow L_{0}-\epsilon_{L} \gamma^{(\mu)}, \quad \bar{l}_{0} \rightarrow \bar{l}_{0}-\epsilon_{R} \gamma^{(v)}
$$

Thus, the Virasoro constraints lead to

$$
\begin{aligned}
& E_{L}(0)=\epsilon_{l}(\hat{\mu})+\frac{2 \hat{\mu}}{\omega} \epsilon_{l}(\hat{\mu}) \epsilon_{R}(\hat{r}) \\
& \epsilon_{R}(0)=\epsilon_{R}(\hat{\mu})+\frac{2 \hat{\mu}}{\omega} \epsilon_{l}(\hat{\mu}) \epsilon_{R}(\hat{\mu})
\end{aligned}
$$

LL) the spectrum of strings on any $T_{s} T$ transformed background* matches the spectrum of a $\underbrace{\text { single-trace } T \bar{T} \text {-deformed } C F T}_{\operatorname{Sym}^{P} M_{\mu}}$!

Thermodynamics
The is backgrounds feature a horizon at

$$
r_{n}=2 T_{u} T_{v} \rightarrow \text { same as before the } T_{s} T
$$ transformation

Since the low energy effective theory is just sUara the entropy is

$$
\begin{aligned}
S=\frac{A}{4 G} & =\frac{\pi}{44} \frac{\left(T_{u}+T_{v}\right)}{1-\lambda T_{\mu} T_{u}} \\
& =2 \pi(\underbrace{\sqrt{K P \rho} \epsilon_{L}(1+\underbrace{1-2}_{\frac{2 \hat{\mu}}{\frac{2 \lambda}{K P}} \epsilon_{R}}}_{\frac{c}{6}}+\sqrt{K P \epsilon_{R}\left(1+\frac{2 \lambda}{K P} E_{L}\right)}
\end{aligned}
$$

Lo matches the entropy in the single trace case!

$$
\Rightarrow \quad T_{L}=\frac{1}{\pi} \frac{T_{u}}{1+\lambda T_{u} T_{u}}
$$

Lo consistent with the first law $\delta S=\frac{1}{T_{L}} \delta E_{L}+\frac{1}{T_{R}} \delta G_{R}$

Comments and conclusions

- The matching of the spectrum is consistent with the fact that the long string sector is captured by $S_{y m}{ }^{\rho} \mu$.
- The entropy also matches the $S_{y m}{ }^{p} \mu_{\mu}$ formula.

The Sym ${ }^{p} \mu_{\mu}$ derivation relied only on
(1) modular invariance
(2) energies of the vacuum

Tentative explanation: the marginal deformation Φ of sym ${ }^{P} T^{4}$ most preserve (1) $+(2)!$

- Additional evidence for this from the gravitational charges of the ground state geometry:

$$
E=\frac{k p}{4 \lambda}(\sqrt{1-\lambda}-1)=\underbrace{\frac{p}{2 \hat{\mu}}\left(\sqrt{1-\frac{\hat{\mu} c}{3 p}}-1\right)}
$$

same energy of Sym $^{\rho} \mu_{\mu}$ used in derivation of S

- We have several pieces of evidence that $T_{s} T$ transformations are related to the single-trace $T \bar{T}$-deformation.
- What happens at $12=1$? Can we prove this correspondence exactly, to the same level as string theory on $A d S_{3}$?

